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Abstract: In the present work, we execute the Lie symmetry analysis on the Einstein-
Maxwell field equations in the plane symmetric spacetime. Under the background
of the plane symmetric space-time we compute the Lie point symmetries, perform
the similarity reductions and obtain exact solutions in connection to the evolu-
tionary scenario of the universe. The special feature of the study is that it deals
with the electromagnetic energy of the inhomogeneous universe through the non-
vanishing component of electromagnetic field tensor F;2 and assumes that the free
gravitational field is of Petrov type-II non-degenerate. We have found that the
electromagnetic field tensor is positive and increasing function of time. To vali-
date the solution set, we examine with detailed discussions several physical as well
as geometrical features of a specific sub-case of the model.

Keywords: Cosmological model; Einstein-Maxwell space-time; Lie point sym-
metry; Petrov type-II

1. Introduction

The Friedman-Robertson-Walker (FRW) [1] cosmological model describes a uni-
verse that configures the smoothness of the cosmic spacetime. On the other hand,
the current astrophysical observations also have exhibited that the distribution
of matter is isotropic and the geometry of the present universe is in the form of
spherical symmetry. However, it is also quite clear that at the early stage of evo-
lution the universe could not have such a smoothed picture. Keeping this aspect
in mind, in the present study we confine ourselves to construct the model of an
inhomogeneous universe by considering the metric polynomials as function of the
space and time both.

At theoretical point of view, the inhomogeneous cosmological models are too
impartant mainly due to the following two reasons: (i) less validity of isotropic dis-
tribution of matter closure to the big bang impulse, and (ii) Perturbation present
in the standard cosmological model. Firstly, Tolman [2] and thereafter other scien-
tists, viz. Bondi [3], Taub [4,5], Tomimura [6], Szekeres [7] and Senovilla [8] have
time to time constructed variety of plane symmetric inhomogeneous cosmological
models through the exact solution of Einstein’s general relativistic field equa-
tions. Later on, Ruis and Senovilla [8] have presented a significant work which is
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singularity-free inhomogeneous cosmological model. Further Bali and Tyagi [9] and
Pradhan et al. [10,11] have extended their studies on the plane symmetric inho-
mogeneous cosmological model under the Einstein-Maxwell space-time. Recently,
Pradhan et al. [12], Yadav [13], Ali and Yadav [14] and Ali et al. [15] have also
investigated various inhomogeneous cosmological models taking into consideration
of different physical aspects.

In 1983, Zeldovich et al. [16] had been investigated the effect of magnetic field
on galactic scale that gives clue for the importance of magnetic field for different
astrophysical phenomenon. Harrison [17] has also discussed some applications of
magnetic field in cosmology which motivate us to include magnetic field in the right
side of Einstein’s equation. In the recent past, the results of WMAP data are in
favour of anisotropic modelling of universe. Some authors [18,19] have speculated
that the occurance of a primordial magnetic field is bounded to some anisotropic
models of universe spacially in case of B-I, II, III, VIy and VII. In this connection
Zeldovich [20] and Barrow [21] have investigated that the magnetized anisotropic
pressure dominates over the evolution caused by shear anisotropy. However, the
existence of such field may possible at the end of an inflationary epoch as ar-
gue by several authors [22-24]. All the above studies indicate that the magnetized
anisotropic models of universe play significant role in the evolving process of galax-
ies as well as stellar systems.

The Symmetry analysis method is a powerful tool for solving these equa-
tions [25-28]. These methods have been successfully applied in the area of the-
oretical physics, in particular quantum mechanics, fluid dynamics and particle
physics [29,31]. We have elaborated this technique in the area of relativistic cos-
mology. Some applications of the Lie point symmetry analysis methods are dis-
cussed by Ali et al. [14,15]. For more details of the Lie groups, one may consult
the following works [29,32,33] which deal with several applications including re-
duction of order of PDEs, development of similarity solution and generating new
solutions from known ones. The classification of group-invariant solutions of dif-
ferential equations by means of the so-called optimal system is one of the main
applications of Lie group analysis of differential equations. The method was first
conceived by Ovsiannikov [26]. In 1985, Ibragimov [31] has given some examples of
optimal system in his book. Later on, Olver [27] has summarized some interesting
discussion on similarity solution based on optimal systems.

In the present study, therefore, our goal is to search for an effective method
for solving the system of nonlinear PDEs. This methodology we employ for accel-
erating universe in the plane symmetric space-time filled with non-exotic matter
and electromagnetic fluid under general relativistic background. The outline of
our study is as follows: in Sec. 2 we introduce the mathematical modeling of the
accelerating universe in the plane symmetric space-time whereas Sec. 3 deals with
the solution of the field equations. In Sec. 4 we provide some studies of physical
and geometrical properties of our models and its validity. A few comments with a
short discussion are presented in Sec. 5.

2. The Einstein-Maxwell spacetime geometry
The line element considered here is as follows

ds® = A® (da® — dt?) + Bdy® + C?d2?, (1)
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where the metric potentials A, B and C are functions of the spatial and temporal
coordinates z and ¢ both.
The usual form of energy-momentum tensor is given by

T, = (p+p)vwv’ +pgy, + Ey, 2

where Ej, is the electromagnetic field and it is read as
1
Bl = i [ (ouv" + 505) = Guc'] - ®)

In above equations the parameters p, p, v*, iz and (, are the energy density,
isotropic pressure, flow vector, magnetic permeability and magnetic flux vector
respectively where

Ce= *vaj- (4)

==

Again, the dual electro-magnetic field tensorSynge1960 is given by

*Fu = \/Z:gfwleM~ (5)
Here, we assume the current is flowing along z axis and Fi2 is the only non-
vanishing component of electro-magnetic field tensor and the Maxwell equations

are read as
1
:FLV — 0’ 6

where the semicolon (;) stands for their usual meaning, i.e. the matter creation
through non-zero left hand side is possible while conserving the over all energy
and momentum.

The Maxwell equation (6) leads to 2 [%]

= 0 which requires that
F12(a:, t)C(m, t)
fi(z,t) B(, 1)
where f(t) is an arbitrary function of ¢ and we assume the component Fj2 of the
electromagnetic field and the magnetic permeability i as a functions of z and ¢
both.
The Einstein field equations are read as

= f(®), (7

R} — S Rg] = —8xT/, (8)
Solving Eq. (1) with Eq. (8), one obtain

Bet | Cat At (Bm Cz)_zil: (Bt+Ct) —0, ©)

B=F+to-a\ste

Bp= b _TeTw M Tow y Teo ol O (L

_ BiCt—BgCy | Bt | Coz | Aga— A | At (Ar By Cy
=S ST St 2 )
e (G By S =0, o)
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2 _ Bz — 2Btt _ % Agz — Att BzCy — Btct
xATp(zt) = =55 2c T 24 T 2BC
Ay (At Cy Az (Az By C:
2A(A+_+C) 2A(I‘F‘F>’ (11)
2 — 204z % Agz — Age | 3(BtCt — Bz Ca)
XAp(z,t) = 20 - T oA 2BC
(4 )t ea (F+5+T)
2A(A+B+C toalatete (12)
XFia(z) _ BoCo—BiCr  Cu _ Baw , A= Awe +7 (ngi_ ﬁ)
B2ji(z,1) BC cC B A C B 4
Az Bz Ca
(GBS
The scalar expansion © and shear scalar o2 can be provided as:
. Ay By | Ci
o=4(%+5+ %) (14)
2
0? =G — (4B + 48+ 53). (15)

In Egs. (9)-(13), there are five highly non-linear differential equations with six
unknown variables, viz. A, B, C, p, p and F2/f. In general, it is impossible to
solve these equations without assuming physically reasonable conditions amongst
the parameters. In the present situation for the model (1), let us assume that
© o o} which leads to the relation between the metric potentials as follows:

BB -G-s(%+5+%) (16)

where § is a proportional constant.
Equation (16) can be written in the following convenient form

%zn(%-i-%‘), (17)

where n = %.
Integrating it with respect to ¢, we obtain

A(z,t) = f(z) B™(z,t)C™(z, t), (18)

where f(z) is an integration constant and has an arbitrary functional relationship
with z.
Equations (18), (9) and (10) lead the following equations
— th Czt n (B.'I:Bt Bzct + Btcm + C.'I:Ct) .

B2 ' BC 2

L@
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2 2
Ezzn(B” —%) +(1—n)@+(1+n)%+2n<31 C’”) +

B C B B? (2
N B:Cy B B.Ca B f_l (& &) ff”—fl2 _
(1-2n) BO (1+2n) BO 7 B+C +—f2 =0. (20)
Here and in what follows, a prime indicates derivative with respect to the co-

ordinate z.

3. The solutions of the Einstein-Maxwell field equations

If we solve the system of second order nonlinear partial differential equations
(NLPDEs) involved in Egs. (19)-(20), we shall get the exact solution of the problem
under consideration. Several authors [34-36] have adopted a simple approach to
obtain exact solution by taking into account B(z,t) = Bi(z)Ba(t) and C(z,t) =
C1(z)Ca(t). However, in the present paper we have investigated for a new solution
by using the symmetry analysis method [26,27,29,30] and optimal system [26,27].
It is to note that a complete description of the methods to solve NLPDEs in the
framework of general relativity are available in the following works [37,15].
Thus for metric (1), the components of symmetries are given by

&1=ciz+co, &2 =cit+c3, m = caB, 12 =c5C, (21)

where the function f(z) must be taken the following forms

f(z) = ce exp [07z], if ¢1=0,
(22)
f(z) = cs(clz—}-(:g)cg, if ¢1 #0,
with ¢; an arbitrary constant where i =1,2,...,9.
The equation (22) leads the following optimal systems
XM = X1 + caXa + c5Xs,
X® = crXo + X3 + caXa + 5 X5,
X®) = X5 + c4 X4 + c5 X5, (23)
X® = X4 + 5 X,
X0 = X5

In the present work our procedure of solving the NLPDEs is similar to the
works [37,15] but here the source of the energy-momentum tensor and explicit ex-
pressions of all the cosmological parameters are entirely different. Basically in this
study we have presented a model of accelerating universe filled with perfect fluid
and electromagnetic field in the framework of inhomogeneous plane symmetric
space-time. To our knowledge, this is the first study that deals with the inhomo-
geneous modelling of accelerating universe by taking into account the perfect fluid
and electromagnetic field as the source of matter-energy density.

The characteristic equations for symmetries (21) are read as

dx dt dB dC

ciz+ca cit+cs caB  esC

(24)
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From Eq. (23), it is to be noted that ¢; = c3 = 0 for symmetries X3, X® or
X®). Also Eq. (24) leads to the similarity variable as £ = t, where B and C have
functional relations with ¢. Therefore, invariant solutions are possible only for the
following two cases:

Case I - Symmetries X (?): From Eq. (24), with ¢; = 0 and ¢3 = 1, we have

€ =z +bt, B(z,t) = ¢(£) explez],
C(z,t) = ¢(€) explda],

where b= —c2, c= ¢ and d = & are arbitrary constants.

(25)

Case II - Symmetries X(!): From Eq. (24), with ¢; =1 and ¢2 = c3 =0, we
have

£= 1L, B(a,t) = 2(€), Cla,t) =a?(¢), (26)

where ¢ = ¢4 and d = c¢5 are arbitrary constants.

However, one can perform mathematical and physical analysis by considerding
several subcases under the above two cases and conclude that Case I and some of
its subcases lead us to the physically interesting and viable solutions. Therefore,
to save time as well as space, we shall consider only Case I and following subcases
in our calculations.

Hence, substitution of the transformations (25) in Egs. (19)-(20) provide

[07—c+2n(d—c)}% [07—d+2n(c—d)] +2n(w’+¢i)2—

¢
Y
— - —=0 27
PR (27)

[(n—l)bz—n]%:/— [n—i—l—nbﬂi —+—2n(i2 +¢—12 +

o4
v

+d(c—d)+cr(c+d) +n(c+d)*=0. (28)

[2n 41+ (2n — 1)b?]

¢
¢

Egs. (27) and (28) being difficult to solve one may consider a special case with
b = —1. Therefore, subtracting in Eq. (27) and (28), we get

[w—l—d-}—?n(c—l—d)} -

[67 +d+2n(c+d) — 2a4]

d
¢ 4ol o, (29)
where ag — d<c7—d>+c(c7+d)+n(c+d)2
After integration the above equatlon with respect to &, we obtain

$(€) = r19™ () explaot], (30)

where a1 = %’i{ while 71 is an arbitrary integration constant.
The equation (27), after using the transformation

#(€) = raexp [z [ 2(§)de (3)
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and (30), becomes

2 =mQ® + 0202+ s, (32)
where

Qs [(c2+3d2)(c2+2cd—d2)+4d2[(c—d)a0+(c+d)c7]]
m= d(c—d)(c+d)? )

c*—8c?d? —4cd®+3d* —2 cs+502d+7cd2—5d3:| ap+8dag [(d—c)ao—(c+d)C7] (33)
2= 2d(c+d)? -7

ag(c—d) [2c(d+ag)(d+C7+ao)—d(d—c-,+ao)(d+2ao)+c2 (3d+C7+3a0)]
= 2das(ctd)? )

and 7 is constant while 2(€) is a new function of £.

To get solution of the above ordinary differential equation we consider the
following special cases: m1 # 0, 72 = 0 and 73 # 0 so that the general solution to
Eq. (32) becomes

0(9) = \/%gtan [\/a5a3{j|. (34)
The above solution is very complicated because the values of a3z and a5 are very
2
complicated. Therefore, we shall study the simple case as follows: ag = % - %d —c.

Now, using (34), (31), (30) and (25), and after some calculation, we can obtain
the solutions of the metric functions in this case as follows:

Case(b—l):m>3+2
m

[ K [(2m3—5m2+m—2)z—(m2—3m—2)t]

A(z,t) = q1exp

V2(m—1)2K,
x cos™o[f],
B(s,t) = gz exp | 25052 | cosm -], (35)

V20K |:(m2—m—2)z—(m2—3m—2)t]
C(o,t) = asexp e

L x cos(m 10 [g],

where 70 = gy, K§ = m =3 = 2, f(a) = coexp | V2O omiamtz] ang

0 = K(z —t), the symbols K, m, q1, g2 and g3 all are being arbitrary constants,
however, here m will never be 0 or 1.

Case (b — 2) :m<3—i—2
m
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( -K |:(2m3—5m2+m—2)z—(m2—3m—2)t:|
A(z,t) = q1exp TE R I)
x cosh™°[6],
B(z,t) = g2 exp [N_LKKO%—Z} cosh(m~1 0], (36)
-\/§ng |:(m2—m—2)z—(m2—3m—2)t:|
C(z,t) = gaexp s
x cosh (™10 6],

\

3_ 2 _
where 70 = (i, K§ = 2 +3 —m, f(z) = coexp [V Zimiem_nz ],

0 = K(z —t), the symbols K, m, q1, g2 and g3 all are being arbitrary constants as
above, however, here also m must never be 0 or 1.

4. Validity of the cosmological models: a special case study

As mentioned in the previous Sec. 3, we are now performing a study regarding
different properties of the model in Eq. (50) under subcase (b-1). One can observe
that if we take m = 0 or 1, the values of the constants diverse to infinity. For this
reason we have purposely skipped the Case (b-2) as this prescription represents
a non-realistic model.

For this model, from the equation set (35), we get the following physical pa-
rameters

22 —\/EK [(m2—3m—2)t—(2m3—5m2+m—2)z] 1
pla,t) = 2LHEE" exp Ry
Xq7 84 o ) (37)
x (ﬁ(3 +4m —m®) + Ko(1 + 2m + 3m?) tan[e]) cos~270[g],
-\/EK |:(m2—3m—2)t—(2m3—5m2+m—2)m] 1
2v2+2K?
p(:c, t) = qu;(g exp Ko(m—1)2
IINE)

x (ﬁ(nﬁ —2m® — 2m+1) + Ko(1 — 2m — m?) tan[e])
x cos~270[g],

Flzz(z:t) _ 4\/§m2‘I§Kz exp[4\/§’YoK:L‘/K0]
azt) X(m—1)2K2 cos(2=2m)70[6] (39)

(ﬁ(m3 —om? —2m—1) — Ko(m? + 1) tan[o]),

where p, p and i are the energy density, pressure and magnetic permeability re-
spectively with yo = (M_Ll),, 0=K(z—t).
Now, by considering the condition (7), we have

2 2
_ AK2~2q2 2v2Ko |:(m —m—2)z—(m —3m—2)t]
(@) = T fd e %

(40)
x (2m3 — 4m? — dm— 2 — V3Ko(m? — 1) tan[o]) cos20(m+1) [g]
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m=05"q =12"K=1"K =1' 'm=05"q =12"K=1"K =1'
£(Gyr) 0.H
0.2 0.4 0.6 0.8 1 :
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0.6
-0.14
0.5
-0.24 0.44
P
P 0.3
~034
0.4
-0.44 0.+
0 T T T T T 1
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Fig. 1 Variation of the fluid pressure and matter-energy density with respect to the age of
the universe t for the specified values of the constants of the model.

‘m=05"¢ =1.2"K=1"K =1

0.4
0.3
ptp

0.2
0.1

0 T T T T T

02 0.4 0.6 0.
1(Gyr)

Fig. 2 Variation of the null energy condition p + p with respect to the age of the universe ¢
for the specified values of the constants of the model.

2_ 2 o
Fia(z,t) = _AK*13050 exp V2K7o [(m m)z—(m?—3m 2)t]
’ K3x/f () e "

x (2m3 —4m? — dm— 2 — V2Ko(m? — 1) tan[O]) cos2mo [g],

In Fig. 1 we have drawn the behaviour for p and p which show the expected
evolutionary features of the universe.

By using the expressions of density (Eq. 37) and pressure (Eq. 38) we also
draw plot for p + p in Fig. 2. This figure indicates that the null energy condition
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(i.e. p+p > 0) is obeyed by the system in the early time, however violates at the
later stage which supports a deceleration to acceleration feature of the universe.

Now, the expressions for the volume element (V), expansion scalar (©), shear
tensor (o7) and shear scalar (0) are given by

(2m+2)7o 0]

V2K [(2 +5m+2m? —m3)t — (2 —m+ 6m? — 3m3)$]

V= q%qzqa cos exp

(m—1)2Ko

(2m+1)y K (\/E tan[G]—K(J) K [(m2—3m—2)t—(2m3—5m2+m—2)z]

- V/'2¢1 cos0[6) exp V2Ky(m—1)2 (43)
1
o1 = (1+12m il %) 0,
2 _ 1 (24+7m+5m?—2m®)—/2(m? —4m) K, tan[6)
92 = 376m ( (m2—3m—2)—+/2mK tan[] )6’ (44)
ag’ = —(o% +a§).
o2 = ?(211327?";22 80+01 cos[20] —2v2m(m?+m+1) K sin[26)] 92’ (45)

2
|:(m2 —3m—2) cos[f] —v2mK sin[9]:|

where §p = 4m* — 12m3 — 5m? + 9m — 2 and 6, = 4m* — 16m3 + 3m? — Tm — 2.
On the other hand, non-vanishing acceleration and rotation components are
computed as

in= K (52 — V2mKy tan[B]),

@1 K | 82—v2mK tan[6) K Jzz—(m2—3m—2)t]
X exp
V2(m—1)2K, V2(m—1)2K,

W41 = —Wi14 = COS’YU [9],
(46)
where 62 = 2m3 — 5m?2 +m — 2.
Following the work of Feinstein and lbanez [38] and Raychaudhuri [39] the
deceleration parameter is given by

2
~Yo(14+2m)3 K* 63+\/§mK0tan[9]) 22K | 83t—boz .
_ —2—470
a= 1q7(1-m)5K? exp (m-1)2K, cos (0]

(47)
x [m2 —Tm+ 4+ (m? — 5m — 2) cos[20] — 2v2mKo sin[20]] ,

where 63 = m? — 3m — 2.

The deceleration parameter q is ploted in Fig. 3 which interestingly indicates a
change over from the positive g to the negative ¢ with evolution of the universe, i.e.
in physical sense from deceleration to accelerating universe. Therefore, the figure
actually reveals two particlar features: (i) there is a flip-flop which indicates a slow
rolling down of the phase of universe from dceleration to acceleration, and (ii) the

35
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‘m=05"¢ =12"K=1"K =1

50

401

30

204

0 0.2 0.4 0.6 0.8 1 1.2
1(Gyr)

Fig. 3 Variation of the deceleration parameter g with respect to the age of the universe ¢ for
the specified values of the constants of the model.

phase of acceleration from deceleration has been started from around ¢t = 0.29 Gyr.
In the present epoch of an accelerating universe, q lies near —0.50 + 0.05 (see the
following works [40-43]. From our model, we can recover ¢ = —0.5 for ¢t = 0.244 Gyr
when deceleration to acceleration occurs whereas we got ¢ = —0.5 at t = 0.29 Gyr
after fine tuning it. However, this data for time seems very low as literature sug-
gests a probable much higher value for ¢t as ~ 6 Gyr [44-49].

5. Conclusion

In the present study, the Lie symmetry analysis has been executed under the
Einstein’s general relativistic background and hence construction of models for
the accelerating universe with perfect fluid and electromagnetic field has been
done in plane symmetric spacetime.

Some interesting and viable physical features of the studies are as follows:

(1) In the present investigation the free gravitational field is assumed to be of
the Petrov type-II non-degenerate which provides physically interesting results.

(2) The study deals with the electromagnetic energy of the inhomogeneous uni-
verse. The electromagnetic field tensor (Fi2) is found to be positive and increasing
function of time.

(3) Among the models presented in Sec. 3 only the case studied in Sec. 4 is
found to be interesting with temporial behaviour as far as plots and data are con-
cerned. Other models are with unrealistic physical features having either positive
density and volume decreasing or volume increasing but density is negative.

(4) The deceleration parameter g as ploted in Fig. 3 interestingly indicates
a change over from positive g to negative ¢ with evolution of the universe i.e.
from deceleration to accelerating universe. From our model, we obtain presently
accepted numerical value of ¢ as -0.5 for ¢ = 0.24 Gyr. However, this value of age
seems very low with respect to ¢t ~ 6 Gyr as available in literature [44-49).

As a final comment we would like to put our overall observations of the present
study as follows: qualitatively (see Figs. 1-3) the model under plane-symmetric
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Einstein-Maxwell spacetime is very promising though quantitative result (¢ from
Fig. 3) seems does not fit for the observed data. This readily indicates that either
the analysis under plane symmetric spacetime is not fully compatible with the
observable universe or probably we have missed some of the threads in our whole
consideration which are responsible to make the analysis partially compatible.
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