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Abstract: We study the Hawking radiation with the dynamical horizon in the
K-essence Vaidya geometry. By considering the K-essence action to be of the
Dirac-Born-Infeld variety, the physical spacetime to be a general static spheri-
cally symmetric black hole, and by restricting the K-essence scalar field to be a
function solely of the advanced or the retarded time, Manna et. al. have estab-
lished the connection between the K-essence emergent gravity scenario and gen-
eralizations of Vaidya spacetime. Based on modified definition of the dynamical
horizon by Sawayama, we investigate the Hawking effect in the K-essence Vaidya
Schwarzschild spacetime. Especially, we investigate the Hawking Radiation in the
two ways, by using the dynamical horizon equation and using the tunneling for-
malism. The results are different from the usual Vaidya spacetime geometry.
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1. Introduction

It is believed that a black hole is formed by the collapse of matter and it radiates the
thermal radiation whose temperature is proportional to the surface gravity [1-10].
In [1], it is assumed that the spacetime is to be static or stationary for calculating
Hawking Radiation. This assumption will be valid only when the radiated energy
is so small compared to the mass energy of the black hole. When the radiation
becomes sufficiently large, it can be modified via Einstein equation. In this con-
text, Vaidya [11,12] has solved nonstatic solution of the Einstein’s field equations
for spheres of fluids radiating energy. The nonstatic analogs of Schwarzschild’s
interior solution in General Relativity (GR) has been established in [13,14] and
the problem of gravitational collapse with radiation has been solved in [15]. The
solution has satisfied the physical feature of allowing a positive definite value of
the density of collapsing matter, and it gives the total luminosity of the object as
observed by a stationary observer at infinity to be zero when the collapsing object
approaches to the Schwarzschilds singularity. So, we can say that the Vaidya space-
time [11-15] is a non-stationary Schwarzschild spacetime. Husain [16] and Wang
et. al. [17] have developed the generalizations of Vaidya spacetime corresponding
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to the gravitational collapse of a null fluid. Recently, Manna et al. [18,19] have
established the K-essence generalizations of Vaidya spacetime where time depen-
dence of the metric comes from the kinetic energy (¢2) of the K-essence scalar
field (¢). The Hawking radiation [1-10] has been discussed in [20-24] using tun-
neling mechanism. Also, it was developed by the method of complex path analysis
which is used to describe tunnelling processes in semiclassical quantum mechanics
in [25,26]. Kerner and Mann [27] have established, in general, that the Hawking
temperature is independent of the angular part of the spacetime. In [28-31], they
have discussed the Hawking radiation of Vaidya or Vaidya-Bonner spacetime.

The K-essence theory [32-38] is a scalar field theory where the kinetic energy of
the field dominates over the potential energy of the field. The differences between
the relativistic field theories with canonical kinetic terms and the K-essence theory
with non-canonical kinetic terms are that the non-trivial dynamical solutions of the
K-essence equation of motion, which not only spontaneously break Lorentz invari-
ance but also change the metric for the perturbations around these solutions. Thus
the perturbations propagate in the so called emergent or analogue curved spacetime
with the metric. Based on the Dirac-Born-Infeld (DBI) model [39-41], Manna et
al. [42—-45] have developed the simplest form of K-essence emergent gravity metric
G uv which is not conformally equivalent to the usual gravitational metric gu.. The
theoretical form in the K-essence field, the lagrangian is non-canonical and it does
not depend explicitly on the field itself. The general form of the Lagrangian for
the K-essence model is: L = —V (¢)F(X) where X = ¢"'V, ¢V, ¢.

Ashtekar and Krishnan have considered the dynamical horizons in their pa-
per [46-51], and derived a new equation that describe how the dynamical horizon
radius changes. The definition of dynamical horizon is as follows: Dynamical Hori-
zon: A smooth, three-dimensional, space-like submanifold H in a space-time M is
said to be a dynamical horizon if it can be foliated by a family of closed 2—surfaces
such that, on each leaf S, the expansion ©(;) of one null normal [* vanishes and
the expansion @y of the other null normal n® is strictly negative. Also, this def-
inition can be modified as [52]: A smooth, three-dimensional, spacelike or timelike
submanifold H in a space-time is said to be a dynamical horizon if it is foliated
by a preferred family of 2-spheres such that, on each leaf S, the expansion @y of
a null normal [* vanishes and the expansion ©(y) of the other null normal n® is
strictly negative.

Following [48], in the concept of world tubes, if the marginally trapped tubes
(MTT) is spacelike,it is called a dynamical horizon (DH). Under some conditions,
it provides a quasi-local representation of an evolving black hole. If it is null, it
describes a quasi-local description of a black hole in equilibrium and is called an
isolated horizon (IH). If the MTT is timelike, causal curves can transverse it in
both inward and outward directions, where it does not represent the surface of a
black hole in any useful sense, it is called a timelike membrane (TLM).

In this work, we have studied the Hawking radiation with the dynamical hori-
zon in the K-essence emergent Vaidya spacetime based on Sawayama [52] by con-
sidering dynamical horizon equation [46—49] and tunneling formalism [20-26,28,
29,42-44).

The paper is organized as follows: In section 2, we briefly discuss the K-essence
emergent geometry and corresponding K-essence Vaidya spacetime. We describe
the dynamical horizons considering Schwarzschild black hole as a background for
the K-essence emergent Vaidya spacetime in section 3. In the next section, we



have discussed in detail the dynamical horizon equation for the K-essence Vaidya
Schwarzschild spacetime. Also, we have discussed the corresponding Hawking ra-
diation using dynamical horizon equation and tunneling mechanism. The Last
section is our discussion.

2. Brief review of K-essence and K-essence-Vaidya Geometry

The K-essence scalar field ¢ minimally coupled to the background gravitational
metric guv has action [32]-[36]

Selé,9u] = [ d'ov=gL(X,9), (1)

where X = % 9"’V u¢pVu¢ and the energy-momentum tensor is

oo 2 85
HT =g bgm

=LxVudVié — guvL, )

where Lx = g—)lg, Lyxx = (’fTIQ, Ly= % and V is the covariant derivative defined
with respect to the gravitational metric gy .
The scalar field equation of motion is

1 6k =y
where
G" = Lxg" + LxxV"¢V"¢, (4)

and 1+ % > 0.
Using the conformal transformations G** = £5G*” and Gy = 7-Guy, with
A(X,9) =1+ 2XLIf‘—X")_1 we have [42-44)]

81

~ _ Lxx
Gﬂu = guv LX i ZXLXX VM¢VV¢- (5)

Here one must always have Lx # 0 for ¢2 to be positive definite and only then

equations (1) — (4) will be physically meaningful.
If L is not an explicit function of ¢ then the equation of motion (3) reduces to

1 68k =

————" =G"'V,V,¢=0. 6
/—g 8¢ vy (6)
Note that for non-trivial spacetime configurations of ¢, the emergent metric
Guv is, in general, not conformally equivalent to gu.. So ¢ has properties different

from canonical scalar fields, with the local causal structure also different from
those defined with gu.,. We consider the DBI type Lagrangian as [42—44,39-41]

L(X,90)=1-V(¢)vV1-2X, )

for V(¢) = V =constant and kinetic energy of ¢ >> V, i.e. ($)2 >> V. This
is a typical for the K-essence fields where the kinetic energy dominates over the
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potential energy. Then c2(X,¢) = 1 — 2X. For scalar fields V¢ = du¢. Thus (5)
becomes

é;w = guv — Oug0Ové. (8)

The corresponding geodesic equation for the K-essence theory in terms of the
new Christoffel connections I is [42-44]

&2z _, do* dz¥ B 9
X2 HY7aN dx )

where ) is an affine parameter and

/

re, =18+ (1 - 2)()71 et [c‘:,wa,, (1 - 2)()1/2

+ GOy (1 - 2)()1/2 — Gy (1 - 2X)1/2]
1

— @ -
=T = 30 -2x)

[50.X + 670, X ] (10)
2.1 K-essence-Vaidya Geometry

Considering a general spherically symmetric static (black hole) Eddington-
Finkelstein line element [18]

ds? = f(r)dv® — 2edvdr — r2d2?, (11)

where d2?2 = df? + sin?0dd?. When ¢ = +1, the null coordinate v represents
the Eddington advanced time (outgoing), while when ¢ = —1, it represents the
Eddington retarded time (incoming).

From (8) the emergent spacetime is described by the line element

dS? = ds® — 8,90, ¢dzt dz”. (12)

Considering the scalar field ¢(z) = ¢(v), so that the emergent spacetime line
element is

ds? = [f(r) — ¢12,] dv? — 2edvdr — rdeQ, (13)

where ¢, = %_

Notice that this assumption on ¢ actually violates local Lorentz invariance,
since in general, spherical symmetry would only require that ¢(z) = ¢(v,r). But
in the K-essence theory, the dynamical solutions are spontaneously break Lorentz
invariance. So, in this context, our choice of form of the K-essence scalar field is
physically permissible.

Now comparing the emergent spacetime (13) with the metric [16,17] of the
generalized Vaidya spacetimes corresponding to gravitational collapse of a null
fluid (take e = +1)

s = (1 - 2"1(7"7“)) dv® — 2dvdr — r2d2?, (14)



where the mass function is
1
m(v.r) = 37 [1 + g2 — f(r)] . (15)

These forms (13) or (14) of metrics are satisfying all the required energy condi-
tions [53] (weak, strong, dominant) for generalizations of the K-essence emergent
spacetime with the Vaidya spacetime provided ¢y¢py > 05 1402 > f+rfr; 2fr+
rfrr > 0 which have established by Manna et al. [18].

3. Dynamical horizons

Following Ashtekar and Krishnan [47] and Sawayama [52], we can discuss behav-
ior of the dynamical horizon of the K-essence emergent Vaidya spacetime. The
generalized Vaidya spacetime (13) or (14) in the presence of kinetic energy of the
K-essence scalar field ¢2 can be written as

dS? = F(v,r)dv? — 2dvdr — r*d2?, (16)

where v? is a null vector.
Following Sawayama [52], we can define

dr
a = dri*, (17)
where r* is tortoise coordinate defined as v =t + r*.
There are two null vectors,
lt a_l
" —a !
a_ —
12 0
corresponding to the null vector v® , and the other is
nt a1
a_ |n" Frzaa !
= = . 1
n nf 0 (19)
n? 0
The expansions ©(;) and Oy of the two null vectors [* and n® are [52]
1
O = ;(ZF —a), (20)
and
1 (—2F? +aF — 2a®
Om = & ( —F+2a ) (21)

We can see that as ©(;) = 0 = 2F —a = 0, and the other null expansion O is
strictly negative which are the required conditions for the dynamical horizon [46,
47,52]. So the horizons of our case are dynamical. Note that, based on Ashtekar et
al. [46-50], Manna et al. [18] also have established the possibility of the dynamical
horizon for the K-essence emergent Vaidya spacetime.

Hawking radiation



Majumder, Manna & Manna

3.1 Schwarzschild black hole as background
In this case f(r) = 1 — 24 then (16) become

T

ds? = (1 - 27M - ¢3)dv2 — 2dvdr — r2d22, (22)
with
_ 2M 2\ 2m(v,r)
Pe (- )= (1 2nlen) @
and the mass function become
m(v,r) =M + %d)ﬁ, (24)
where the tortoise coordinate
rf = e |:’I‘ + B lin(r — B)] (25)
N K

where N = N(v) = (1 — ¢2), B = 2M'(v) = 2 with M'(v) = %

Note that in the above spacetime (22) always ¢2 < 1. If $2 > 1, the signature
of this spacetime will be ill-defined. Also the condition ¢2 # 0 holds good instead
of ¢2 =0, which leads to non-applicability of the K-essence theory.

Now differentiating the above equation (25) with respect to r* we get

- S - %)
—{—%(r—i—B ln(r— B)%)] (26)

Now we solve ©(;y = 0, to determine the dynamical horizon radius as

ZF_GZZF_F[I_%(% ln(r_B)_r?B%)

—i—%(r—i—Bln(r—B)%)] =0. (27)

From the above equation we have two solutions at » = rp one is F =0, i.e.,

2M

TD = 2Ml(’U) = 1_—2, (28)
v
and another is
d[B rp dN
1+ gy o =B -3 =
= (rp —B)Be? =7V, (29)
The value of rp can be written in terms of the Wright w function [55] as
2M
rp=B [1 + w(z)] =5 [1 + w(Z)], (30)

with Z = —[1 +In(B) +vC], C = X& = U-8)"
The Wright w function is a single-valued function, defined in terms of the multi-
valued Lambert W function [56] as w(Z) = W;C(Z)(ez) where K(2)(= [W])



is the unwinding number of Z. The sign of this unwinding number is such that
In(e?) = Z + 2nik(Z) which is opposite to the sign used in [57]. The algebraic
properties [55] of the Wright w function are

dw w
dZ ~ 1+w’ 81
wn+1_1 wn
—+ — ifn#-1
/w"de{ ”+11 n (32)
lnw—; if n=-1,

with the analytic property Z = w + In w.

Here mention that if we consider the usual Vaidya spacetime without K-essence
scalar field ¢ i.e., m(v,r) = M(v) and ¢2 = 0, then from the above equation (29)
we can get back to the Sawayama [52] result as

rp =2M(v) + e~V/AMW@), (33)

4. Dynamical horizon equation and Hawking radiation

From (16), we can construct the Ricci scalar (R) and the Ricci tensors (Ruy) of
the K-essence emergent Vaidya spacetime as

R’ufu = 16'uF - E@?F — EarF :
T 2 r
_ _ 1.9 1 _
Rrv = er = EBTF—F ;87-F : Rrr =0 5
Rop =F +710,F —1; Rpp = Sin2t9R9,9 ;
R:—[83F+§arF+ 2 F-1)]. (34)

Y

Using these values of the Ricci scalar and the Ricci tensors (34), we can con-
struct the components of the energy momentum tensor for the K-essence emergent
Vaidya spacetime through the “emergent” Einstein’s equation Ry, — %C_?,WR =
87T, taking the gravitational constant G =1, as

87Tuy = ~0,F + 2 Fo,F + 52(1? -1), (35)
T T T
— 1 1
87TTv'r = —[;arF + T‘_Z(F - 1)]; (36)
87 Trr = 0, (37)
2
8Ty = —[%8317' + 710, F| ; 81Tpe = sin?0Tp,. (38)

Now, for the Schwarzschild background case (i.e. subcase 3.1), the components of
the energy-momentum tensors for the spherically symmetric K-essence emergent

Hawking radiation
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Schwarzschild Vaidya spacetime (22) are

- 2
8 Tyy = —7"—2[8vm + Form]

26w By M
_ 2 @2
87TT'ur = T—z&«m = 7‘_12)
_ 2a 2
or 8 Tyrx = r—ZaTm = a%v, (40)
87Trr = 87 Tpwp = 0. (41)

Following Sawayama [52], we can derive the energy-momentum tensor T}, for
the integration of the dynamical horizon equation exactly stated in [46,47,52] as

1 . ~agh 3
2 (Re = R) = [ Tl d®v
1 2 213
S /A  Nallol +2¢d%, (42)

where Ry, R; are the radii of the dynamical horizon, Ty, is the stress-energy
tensor, |o|> = 0450, |¢|? = (al?, ogp is the shear, (* = §**7°V.lp, with the
two-dimensional metric §*°, and §(“R) = Ngl® with Ng = |0R|, where R is the
radius of the dynamical horizon. This is the dynamical horizon equation that tells
us how the horizon radius changes due to the matter flow, shear, and expansion.
In the spherically symmetric case, the second term of the right-hand side of the
dynamical equation vanishes.
At first, we can write T}; in terms of Ty and Tyr+ as

L 15
7}z==1bv-7bw :'_Z;;§§
1

5
= _(m)57¢v¢vv- (43)

Ovm

Considering £* being the unit vector in the direction of %, then we have

Tfl = —m E(avm)F_l, (44)

with F is defined in (23). At the horizon, the expression of T} is
1 ‘L"’"TD((%N)F_1 where we have used m = m(v,7) = M + %(1 —N).

4rry
To evaluate, the dynamical horizon integration (42) in terms of the Wright w

function, at first, we derive some terms as follows:

sz‘ =
T=Tp

Using equation (30), we get

dr 2M 2M  w(Z)
i {‘ T (1+e@) + T i <

(l - N”)]avzv _Nwl@) (45)

17



18 Hawking radiation

At the horizon, we obtain, from the above equation (45)

CNw@) [ oM
8vN - m — W(l +w(Z))
oM wZ) 1 Noy]
N 1oz (v - M)] : (46)
and from (30)
drp (N w(Z)
ﬁ - (&,—N) 1+w(2) (47)

Now, re-write the equation (23) in terms of Write w function as

Fe N w(Z)

= T (48)

and from the equation (24)
Bym = — (%D)&,N. (49)

Changing the order of integration rp to N in dynamical horizon integration
(42), we have

N:
5 MM
"4y, N

[2M (1+ w(2))dN,

2@

1
2
N,

(50)

since in the above calculation, the functions 8, N and F~! with fixed rp are used
only in the integration.

Now, using the equations (44) to (49) and inserting the above equation (50) in
the equation (42) and taking the limit No — N1 = N, we have

M

M M  w(2) (1 Nv) 5M

(1+@) + Firroy (v~ 37) v (LHe@) =0 @D
which is the dynamical horizon equation for the spherically symmetric K-essence
emergent Schwarzschild Vaidya spacetime. This dynamical horizon equation in the
presence of the kinetic energy of the K-essence scalar field is far different from the
usual Vaidya dynamical horizon equation [52].

Now we discuss about the Hawking radiation [1-10]:
To solve this problem, we consider two ideas, which are (1) to use the dynamical
horizon equation (42), and (2) to use the K-essence Schwarzschild Vaidya metric
(22) using tunneling mechanism [20-26,28,29].

4.1 Using the dynamical horizon equation
Considering the result of Candelas [54], for the matter on the dynamical horizon,
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which assumes that spacetime is almost static and is valid near the horizon [52],
from (22), 7 ~ 2m(= M)

Ty = 2m2(1 — 21'(n) /0 edmmw _
-1
= —’ 52
2min2c(1 — —2;n) (52)

with ¢ = 15 x 8* = 61440, where we have used the following value of the integration
oo widw w*

0 etw—1 — 15b6%°
The matter energy of the equation (52) is negative near r ~ 2m, which means
that in the dynamical horizon equation, the K-essence Schwarzschild Vaidya black
hole absorbs negative energy, i.e., the black hole radius decreases. Note that, the
K-essence Schwarzschild Vaidya mass m(= %), at near the horizon, is greater

than the Schwarzschild mass as ¢2 < 1. Also, the dynamic behavior of the mass
function m(v,r) is carried by the kinetic energy (¢2) of the K-essence scalar field
which is defined by the equation (24). Here we use the dynamical horizon equation,
since we need only information about the matter near the horizon, without solving
the full Einstein equation with the backreaction.

Now following [52], we can get

1

Ty = — - 53
i 2mAn2c(1 — QTm) (53)

Again, by changing the order of integration of the right hand side from rp to
N of the dynamical horizon equation (42)

/:Mr%TadTD:b N [2]1\\]4(1+ ( ))]ZWX

[M + %(1 +w(Z)1 - N)] (C(Z\?)dN

—b/l 22+ wz)] x [M+N(H“(Z))(l_N)]_4(ale)dN’ 59

where b = % is a constant. Since in our case, the time dependence of the K-essence
Schwarzschild Vaidya metric is carrying ¢2 i.e., N (=1- ¢5)

Now insert this integration (54) into the dynamical horizon equation (42), we
obtain

»-l>~|01

/22M 1+w(Z))dN (55)
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Now taking the limit No = N1 = N and w(Z) # 0, the dynamical horizon
equation becomes

M2 [1 + (1 - %) (1 +w(z))] _ 41’(]1\;2:«(1(22)))3

1+w(Z) . wZ) 1 Noy) |
(‘ N +1+w(z)(ﬁ_ﬁ)) ] ' (56)

Here we are using the fact that N # 0 and M # 0. In this section, our main
objective is to find the behavior of the mass of the black hole m(v,r) with v for
fixed M as in [52]. To conclude this, we have calculated the equation (56) to find
N(=1-¢2) as a function of z but this equation (56) is a transcendental equation
and it cannot solve analytically or numerically since it includes the wright omega
function and higher degrees of N. So that this equation (56) fails to find the be-
havior of the mass of the black hole m(v,r) (for fixed M) through the relation
m(v,7) = M + 5(1 — N) at the horizon.

1_50+w(2)
2 4

4.2 Using the tunneling formalism
To calculate the Hawking temperature using tunnelling formalism [20-26,28,29,
42-44], consider a massless particle in a black hole (22) background is described
by the Klein-Gordon equation

B2 (-G)"%0, (C:/“’ (—-&)*? auw) , (57)
where ¥ can be taken in the form
U = exp (%S—i—) , (58)
to obtain the leading order in % the Hamilton-Jacobi equation is
G"9,588,8 =0, (59)

considering S is independent of § and .
Therefore, we have

20,50, + (1 - ?‘TM =) (ars)2 -0 (60)

Now, let us choose the action S in the following form [29]
S(v,r) = — /0 ’ EWdv' + So(v,7), (61)
so that
0wS = —E(v) + 8ySo and 8,5 = 8,S0.

Since Sy is dependent on v and r, so we can write

ds d 2
TTO = 8,50 + %&,So = OrSo + £0vS0, (62)
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where we have used fl—ﬁ = %, F is defined in equation (23).

Now applying the equations (62) and (62) in equation (60), we get
dSo
F=2% = 2E(v), (63)
since 0rSp # 0.
Therefore, we can obtain the solution of Sy as

So = 2( )/—_2E )/O_&%%)

_ 2E(v) rdr . AME(v)
=N / 273

r—2M/N N2 (64)

with N =1 — ¢2.

Here, we have used the Cauchy-integral formula since in the integral, r is
analytic inside and on any simple closed contour C which is taken in the positive
sense and % is a point interior to C. Therefore, (61) become,

S(v,r) = /E )dv' + 2 4ME(”). (65)

So the wave function for the outgoing (and ingoing) massless particle can be
read as

4M E(v
Voua(vr) = eap[3 (— [ B’ +mi Y], (66)
4M E(v
Uin(v, 1) = e:vp / E(v v — N2( ))] (67)
The tunneling rate for the outgoing particle is
R (68)

where Kp is Boltzman Constant.
Therefore, the Hawking temperature is

1 N2 1 (1-43)2

T
H= 8rKg M _ 81Kg M

(69)
If we consider ¢2 = 0 and m(v,r) = M(v), then we can get back the usual
Hawking temperature for the Vaidya spacetime [30].

4. Conclusion

Based on Sawayama’s [52] modified definition of the dynamical horizon, we have
investigated the Hawking radiation in the K-essence emergent Vaidya spacetime.
Manna et al. [18] have established the connection between the K-essence geometry
and the Vaidya spacetime, and hence generated the new spacetime namely “the
K-essence emergent Vaidya spacetime”. We evaluate the dynamical horizon equa-
tion (51) for the spherically symmetric K-essence emergent Schwarzschild Vaidya

21
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spacetime which is different from the Sawayama’s result, i.e., the usual Vaidya
dynamical horizon equation.

From this study of the Hawking radiation using the dynamical horizon equa-
tion, we have arrived to the transcendental equation (56) which is far different
from the Sawayama’s [52] transcendental equation (38) and this equation can not
be solved analytically in the presence of the Wright omega function [55] but in
future one can find a numerical solution of this equation. So, in this case, we
are not able to find that the behavior of the mass of the K-essence emergent
Schwarzschild Vaidya black hole m(v,r) (for fixed M) at the horizon from the re-
lation m(v,7) = M 4 5(1 — N) . On the other hand, we have also evaluated the
Hawking temperature for the K-essence emergent Schwarzschild Vaidya metric
(22) using tunneling mechanism. The Hawking temperature is Ty = SW}{B (1;11\?[2’)—2,
which is different from the usual Vaidya case.

We hasten to add, two of us (B.M. and G.M.) has coauthored papers [42—
45], used the K-essence theory as a class of theoretical model of the dark energy.
But here we use this theory from a purely gravitational standpoint, rather than
the cosmological context of dark energy whose very existence is still not beyond
doubt [58,59], based on the latest analysis of data from the Planck consortium [60].
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