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Abstract. A generic model is presented to explore optical analogues of coherent population
transfer and trapping in a four-waveguide (WG) directional coupler. In contrast to conventional
counterintuitive order for the coupling coefficients, the present model highlights the robustness
of the approach irrespective of any particular coupling order with varying conditions of initial
light distribution. The coherent propagation characteristics shown by the WG coupler involve all
the adiabatic states instead of dark states only.
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1. Introduction

During past few decades, some researchers have focused their attention to investigate the
probability of exploration of the microscopic quantum phenomena in optical regime. It provides
ample advantage of directly mapping the evolution of wave function in space by simple
fluorescence imaging or scanning tunneling optical microscopy. The field opto-quantum analogy
has become interesting day by day opening up a new avenue with the emergence of coherent
laser source and integrated fiber optics. The opto-quantum analogy have been extended to the
field of quantum optics to emulate many interesting phenomena like strongly driven two-level
system and Rabi oscillations, Electromagnetically Induced Transparency, Fano Interference,
Stabilization of Atoms in Ultra Strong Laser Fields, Stimulated Raman Adiabatic Passage
(STIRAP)linked with Coherent Population Trapping (CPT), quantum state embedded in a
continuum accompanied by Fano Resonance, quantum information processing and quantum
teleportation in photonic structures. WG based photonic structures are frequently used in this
quest since optical analogue of laser-matter interaction effects can be effortlessly produced by
simple engineering of the guiding structure [1,2]. The direct mapping and space visualization of
ultrafast time dependent phenomena is feasible using coupled WG and fiber structure. WG array
and directional coupler have been proven to be important optical tools for reproducing
microscopic quantum phenomena. WG array based photonic configurations are also employed to
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investigate quantum phenomena like Coherent Population Transfer [3-6] and Trapping [7,8],
Fano Resonance [7], Rabi Oscillation [9] effects in broader scale.

In guided wave communication systems, optical WG directional couplers have promising
potential applications including power splitting, switching etc. [10-13]. In the simplest form,
directional couplers consist of two WGs which are installed sufficiently close so as to allow a
coupling between them. As a result, the interference between the two modal fields leads to the
periodical exchange of light energy between the two WGs during propagation [14]. Three or
more evanescently coupled WG systems have attracted great research interest towards
investigation of sophisticated and intriguing behavior in the field dynamics. The schemes for
using three-WG couplers have been introduced by Iwasaki et al. [15] and experimentally
demonstrated by Peall and Syms [16]. The extensive use of the directional coupler as a
switching/modulating device has been theoretically and experimentally shown in various
configurations and materials. The switching characteristics are analyzed in the three-WG system
by launching an incident beam into either the central WG [17] or an outer WG [18,19] or in both
[20,21]. The switching of light is feasible with the adiabatic evolution and the suitable design of
variable coupling coefficients [19] viz. introducing the counterintuitive order. The adiabatic
method is expedient as it needs no specific shape of coupling coefficient or definite system
parameters. However, to ensure the adiabatic evolution of normal modes, the coupling profiles
must allow sufficient overlapping over a significant spatial extent.

Fig. 1: Schematic presentation of a four-WG directional coupler.

Recently, an adiabatic three-WG coupler is presented in which the initial light is launched
in each of the WGs and any sequence of coupling profiles can be allowed to employ [22]. Apart
from switching and power splitting, WG directional couplers find applications as self-trapper
(complete return of light to the initial state) too [23]. Coherent Population Transfer and CPT in
multi-level atomic systems may be envisioned as the quantum analogues of switching, power
splitting and self-trapping effects in coupler systems. In most of the previous works on
directional couplers, the numbers of WGs were restricted to three only. In our present article, we
study the adiabatic light transfer mechanism (optical analogue of coherent population transfer
and trapping) in a four-WG directional coupler which assumes tripod like configuration in
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atomic regime. In almost all earlier works counterintuitive coupling schemes have been used
whereas our present study involves any order of coupling schemes and thereby making our
approach more general. Also the initial light distribution condition can be varied arbitrarily.

2. Theory and Results

Adiabatic four-WG coupler analogous to a four-level tripod system is presented in Fig.1. In our

configuration WG1, WG2 and WG3 are placed to make a small array and the rest WG4 is side
coupled with WG2. The coupling coefficients between: WG1 and WG2 is &, (z), WG2 and
WG3 is k,, (z) , WG2 and WG4 is £k, (z) whereas coupling between other pairs of WGs have

been ignored. We further assume that the propagation constants of all the WGs are equal. In

resonant condition, the tripod like four WG system is described by the Hamiltonian

0 k, 0 0
k, 0 ky k
H(Z)Zh 12 23 M 1)
0 ky; 0 0
0 k, 0 0

where coupling terms are real and satisfy the relation, kij = k;; Hamiltonian (represented by Eq.

(1)) has four eigen values (two of which are equal) given by 4, =4, =0, A, =—4, =hk(z) and

1
k(z)= (kf2 +k2, + k2, )/2. The corresponding adiabatic states can be expressed in terms of two z

k k
dependent mixing angles defined as tan $(z) = 2 (2) 7 and tan ¢(z) = Ky (2) )
() +Ki(2) ks (2)

The adiabatic states corresponding to two zero eigen values (dark states) are
¢ (z) =y, cos 9(z)—y,sin9(z)cosp(z) -y, sin I(z)singp(z) )
¢2(Z)=l//3Sin§D(2)—l,V4COS(p(Z). (3)

Two remaining adiabatic states are
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¢ (z)= %[l//l sind(z)+y, +y; cos 3(z)cos(z)+y, cos I(z)sin (p(z)] 4
¢ (z)= %[l//l sing(z) -y, +y; cos I(z)cos p(z)+y, cos $(z)sin (o(z)] )

in this regard an interesting point to highlight is that our four WG system is capable of
generating double dark resonance. The amplitudes in the original and adiabatic bases are linked

through the relation ¢(z)=M (z)y(z) where the propagation matrix M (z)is orthogonal and

assumes the form

cos 9 0 —sin Ycos @ —sin 3sin @
0 0 sing —Cos @
M(Z)= LsinlSl 1 Lcos300sgz> Lcosl9sin(o (6)
2 2 2 2
Lsin&z _ L Lcos&‘cosgo Lcos.9sin(p
2 2 2 2

The evolution matrix U* (z f,z,.) in the adiabatic basis relates initial and final states such that

¢(z f) =U" (z 2 )¢(zl.) where z, and z represent the input and outputz coordinates

respectively. The evolution matrix in original basis reads as
U(zp2,)=M" (2, )U* (2,2, )M () (7

where

U (Z e zi) = . contains the phase factors in its diagonal elements.

0 0 0 &™

The different elements of the evolution matrix can be explicitly written as:
in, 1 . . in. 1 . . in,
U, =cosJ cosGe” +—sinJ, sinJ €™ +—sin Y, sin J e™
2 2

1. ; 1. .
U, = 5 sin g™ — 2 sin g e
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. a1 w1 i
U, =—cos Y, sinJ cospe™ +5s1n19f cosd cosp, e™ +Esml9f cos § cos @, e
. . i 1 . . i 1 . . i
U,, =—cosY,sin g sinpe™ +5s1n19f cos 9 sin @, e +Esm3f cos 4 sin g, e
1. ooom 1. o
U, =—=sin%e™ ——sin Je™
2 2
1 ., 1
U,=—e"+—=¢e™
2 2
1 in- 1 i7]
U23=Ecosl9icos¢ie 3—5005&005@6 “
1 . _ . in
U24=Ecosz9ism(pie . —Ecosgism(oie ‘
. a1 i 1 ;
U,, =—cos 9 sinJ, cosp e +551n19icosl9f cos g, e +551n19icos 4, cosgp, e™
U32=50053f cosg e —Ecosgfcosgofe ‘
U,; =sin, cos @, sinJ, cos ¢, €™ +sin g, sin ¢, ™ +5cos 8, cos ¢, cos I cos g, e™
1 .
+Ecos 4, cosp, cos I cos g, e™
U,, =sin 3, cos ¢, sin g sin g, ™ —sin ¢, cos ¢, €™ +§cosl9f cos @, cos Y sin g, ™
1 _ .
+ 2 cos 4, cos @, cos I, sin g, ™
| 1 .
_ . . i . . in. . . i
U, =-cosYsind, sinpe™ +Esmz9i cosd, sing, e +Esmz9i cosd, sing, e
1 . i 1 . in
=— e ——cos Y, sing, e
U, 2c053f31n¢f g 5 9, singp, ™

. | .
. ) : i . : "
U,; =sind cosg,sin g, singp, e™ —sinp,cosp, e™ +Ecosl9i cos ¢, cos I, sing, e™
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1 _ .
+ 5 cos g cosp,cosd,singp, e™
. o .
. . . . in in . . in
U, =sind sing, sing sing,e” +cosp,cosg,e™ +5c0s19f sing, cosJ sing, e™”

1 ;
. . .
+5COS 8, sing, cos g sing, e™

Let us assume z, = —ooand z =10

2.1 We now consider four distinct cases of coupling arrangements:

2.1.1 Case 1

The coupling coefficients are arranged in a manner such that &, (Z) originates before and

terminates after k, (Z)whereask24 (Z) is delayed with respect to both £,, (Z) and £k, (Z)

Following Asymptotic relations are applicable for the aforementioned coupling sequence:

4

3 (z = —oo) =94 (z = +oo) =g (Z = —oo) =0,9, (z = +oo) = %.Considering such arrangement
we take four different cases of initial light distributions.
@) If the initial amplitude is given by the matrix (1,0,0,0)", the final light amplitude will
be (&",0,0,0)" which is clearly a self-trapping case.
(ii) When the initial amplitude is(0,1,0,0)", final light amplitude will be
(0, % (e +e™),0, %(e"h —e™ )" . It is evident that initial light in the 24 WG will be

divided into the 2™ and 4" WGs and the amount of light energy present in these
WGs depends upon the phase factors 7;and 7, . In particular for 7, =7,, the light

will be completely trapped in the2™ WG (self-trapping case).
(iii)  Elementary light amplitude (0,0,1,0)" leads to the final amplitude given by

(O,%(e"“ —e ),0,%(5’% +€™ ). Thus initial light in the 3 WG will be shared into

the 2™ and 4™ WGs. In particular when, 7, =7,, the light will be completely

transferred from the 3™ WG to 4® WG. Thus it is obviously a case of light
switching.
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(iv)  If the initial light distribution is (0,0,0,1)", it leads to a final light distribution given
by (0,0,—€",0)" which is a case of power switching from the 4™ to the 3WG.
Thus our four WG coupler configuration is capable to exhibit power splitting, self-trapping

and switching phenomena under different initial light distribution conditions owing to some
specific system parameters.

2.1.2 Case 2

We may engineer the coupling coefficients in a manner in which k,, (z)precedes k,, (z)

and k,, (z)precedes k,, (z) Such sequence of coupling can be mathematically represented by
the following asymptotic relations:

1

9.(2:—oo)=0,l9f(z:+oo):

NN

(z=—0)=0,8,(z=+0)=

NN

@) Now if we envisage the elementary amplitude as (1,0,0,0)", the final light amplitude

will be (0,0,0,—™)". It is clearly a switching case in which light is absolutely
transferred from 1% to 4" WG.
(i) When the initial light sharing is given as (0,1,0,0)", ultimate light amplitude will be

represented by (O,%(ei”3 —e™ ),0,%(8”3 +e' ))T . It is evident that initial light in the

224 WG will be shared into the 2™ and4™ WGs and the phase factors 7,and 7,
regulates the light energy content in these WGs. Specifically, for 7, =7,, the light
will be completely shifted into the 4™ WG (switching case).

(i)  Final light amplitude will be (0,%(6"’3 +em ),0,%(8"3 —e™ )" for initial light

distribution (0,0,1,0)" . Thus initial light in the 3™ WG will be split into the 2" and
4" WGs. For 77, =1, the light will be completely transferred from the 3 WG to the
274 WG.

(iv)  If the initial light sharing is (0,0,0,1)", it directs to a final energy distribution
(0,0,—€™,0)" which is the case of power switching from the 4% to the 3"WG.

2.1.3 Case 3

As an alternative, we may fix up the coupling coefficients in a way in which £,, (z)

precedes ky(z) and ky (z)precedes k,(z). This physical condition may be represented in

terms of the following asymptotic relations:
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19i(z:—oo):0,19f(Z:+oo):%,@(z:—oo)zg,@(z:ﬂo):o.

>i) Under such order of coupling coefficients, if the initial amplitude is (1,0,0,0)", the
final light amplitude will be (0,0,—e™,0)". It is clearly a switching case in which
light is entirely transferred from the 1%t to the 3MWG.

(i)  Final light amplitude takes the form (%(e”h —e”’"),%(e"h +¢€"™),0,0)" for the initial

amplitude (0,1,0,0)". It is manifested that initial light in the 2™ WG will be split into
the 2™ and 1%t WG and the percentage of light in these WGs figures on the phase
factors 7, and 7,. Perfect trapping of light in the 2™ WG occurs particularly for

n, =1, (self-trapping case).
(iii)  For elemental light amplitude (0,0,1,0)", final amplitude will be (0,0,0,—e™)"

which indicates that there will be complete switching of light from the 3™ to the 4t
WG.

(iv)  When we employ the initial amplitude as (0,0,0,1)", final light amplitude assumes
the form (%(ei"3 +e™ ),%(e"”3 —e ),0, 0)". It is clear that initial light in the 4™ WG

will be split into the 2™ and 1% WGs and the content of light energy in these WGs
depends upon the phase factors 7, and 7, . In particular for 7, =7,, the light will be

completely shifted into the 1%* WG (switching case).

2.1.4 Case 4

In fine, we engineer the coupling coefficients in a manner that the coupling coefficients £,, (Z)

and k,, (z) coincide and precede £, (Z) . Such type of coupling sequences satisfy the following

asymptotic relations: §, (z = —oo) =0,9, (z = +oo) = %,g}ﬁl (z = —oo) =g, (z = +oo) = %

>i) If we introduce the initial amplitude as (1,0,0,0)", the final light amplitude will be
(, 0,—%@"’71 ,—%e"m )" It is clearly a power splitting case in which light in the 15

WG is equally transferred to the 3 and 4" WGs.
(ii) Elementary light amplitude (0,1,0,0)” leads the final amplitude

2
shared into the 2™ and 1%t WGs and the amount of light in these WGs is ruled by the

(1(e"'73 —ei”4),%(ei"3 +€"),0,0)". Obviously initial light in the 2™ WG will be
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phase factors 77,and 7, . In particular for 77, =17,, the light will be completely trapped
in the 24 WG (self-trapping case).
(iii)) When the initial amplitude is (0,0,1,0)", final light amplitude will be

s +e""‘) B —e’”4),—e'”2,—5e’”2)T which indicates that initial light in

1 1
25 )

the 3™ WG will be shifted into all the WGs with equal amount of light in the 3™ and
4" WGs (25% in each). Percentage of light shared by the 1%t and 2™ WGs figures on
the phase factors n,and n,. For n, =7,, 50% (0%) light will be trapped in the 1*
2 WG.

(iv)  Final light amplitude will be (L(e""s +e ),L(e""s —e™),

2\2 22

incorporate the initial light amplitude as (0,0,0,1)". Clearly elemental light in the 3™
WG will be split into all the WGs and the content of light in the 3 and 4" WGs be
equal (25% in each). Percentage of light shared by the 1t and 2™ WGs is governed by

1, 1, .
——e””,Ee”72 T if we

the phase factors 7, and 7,. Specifically for 7, =7,, the 50% (0%) light will be
trapped in the 1%t (2")WG.

3. Conclusion

To summarize, the propagation dynamics of a four-WG directional coupler configuration
similar to a tripod system in atomic scale is investigated in order to display the optical analogue
of coherent population transfer and trapping. Our approach may be treated as a general one in the
sense that we have used all the adiabatic states instead of only the dark states (STIRAP
technique) responsible for light transfer mechanism. Another important point to highlight is that
our system is potent to exhibit double dark resonance. Depending upon the arrangement of
various coupling coefficients and different conditions of initial light distribution, the coupler may
behave as power splitter, switch and self-trapper etc.
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