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Abstract: In this paper, we have intended to study the dynamics of the anisotropic
universe in modified gravity using the functional f(R,T) in the form f(R,T) =
AR+ AT. The cosmological models are constructed using the volumetric exponen-
tial expansion in Bianchi type VI, (BVIy) universe for three different values of
h =—1,0,1. The physical behaviors of the models are also studied.

Keywords: Modified Gravity; Perfect Fluid; Deceleration Parameter

1. Introduction

Since the beginning, there has been many significant accomplishments in the
field of astrophysics and space science. Among all of them one of the most sub-
stantial achievement is Albert Einstein’s general theory of relativity. This theory
explains, warping of space-time as being the logic behind the observed gravita-
tional phenomena and gives a complete insight of gravity as a geometric property
of space-time. Thus relativity theory has crucial implications in present day astro-
physics. Contrary to all, Einstein’s general theory of relativity fails to explain the
accelerated expansion of the universe. This swift extension of the universe is indi-
cated by the recent cosmological data, which also determines that this accelerated
expansion of the universe is due to some energy matter with negative pressure.
Cosmologists have termed this energy matter as Dark Energy (DE) whose origin
is still a suspense. DE has posed an elementary objection to all the gravitational
theories. Introduction of ”The Cosmological Constant” by Einstein which gives
the energy density value of the vacuum space was a step towards explaining the
cosmic acceleration but it encountered frequent problems due to considerable dis-
parity between theory and observations [1]. Thus, in order to account for the
cosmic acceleration General Relativity can be altered in contrasting ways. One of
the ways which has gained enough praise is by modifying the underlying geome-
try. This is achieved by replacing the Einstein-Hilbert action through a random
function. f(R) gravity (function of Ricci scalar R), f(T) gravity(function of scalar
torsion T'), f(G) gravity (function of G) and f(R,T) gravity (combined function
of R and T are among the few functions which are used to modify the Einstein-
Hilbert action. It is considered that f(R) gravity is the most satisfactory function
to realize the cosmic acceleration.

Among the several theoretical models proposed in regard of the dark energy and
cosmic acceleration, a few are quintessence (Sahni and Starobinsky [2]; Padmanab-
han [3]), cosmological constant (Weinberg [4]; Peebles and Ratra [5]), tachyon field
(Padmanabhan [6]; Padmanabhan and choudhury [7]), quintom (Feng et al. [8];
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Guo et al. [9]), Chaplygin gas (Kamenshchik et al. [10]; Bento et al. [11]), holo-
graphic models (Wang et al. [12]; Setare and Shafei [13], Setare [14]; Hu and
Ling [15]; Kim et al. [16]), phantom energy (Caldwell [17]; Nojiri and Odin-
tosov [18]), k-essence, f-essence etc. On the basis of verification of the above
theories, modified gravity has been successful in describing the late accelerated
expansion of the universe. Thus, modified gravity nowadays is a topic of great
interest. Out of all prospective variants of modified gravity, the f(R,T) gravity
theory proposed by Harko et al. [19] is one of the most fascinating theories. In this
theory they have generalized the basic f(R) theory by taking the gravitational
Lagrangian as a random function of Ricci scalar R and trace of the stress-energy
tensor T'.

Inspired by the above argument and investigations in modified theories of grav-
ity, in this paper, we offer to study a plane, static and symmetric space time in
f(R,T) gravity by considering various functions of f(R,T) as proposed in [19]
This paper has been organized as follows: In section 1, introductory discussion on
modified gravity was made. In section 2, the field equations of f(R,T) gravity in a
static, plane symmetric space time has been derived. Section 3 formulates the field
equations for a plane, static and symmetric space-time in f(R,T') gravity consider-
ing various cases of f(R,T)i.e. (i) f(R,T) = R+2f(T) (ii) f(R,T) = f1(R)+ f2(T)
(i) f(R,T) = f1(R)+ f2(R)f3(T) and giving the solutions for all the three cases.
In section 4 physical and geometrical parameters of the models are defined and
discussed along with their graphical plots. Finally conclusions are summarized in
the last Section 5.

2. f(R,T) Gravity Theory

In f(R,T) gravity, Hilbert-Einstien type variational principle yields the gravi-
tational field equations. The f(R,T) modified gravity action is given by

§= ﬁ/f(R,T)\/—_gd‘lm—i-/Lm\/—_gd%v )

where f(R,T) is an arbitrary function of Ricci scalar R, T being the trace of the
stress-energy tensor (T;;) of the matter and L., is the matter Lagrangian density.
The stress-energy tensor of matter is defined as

-2 6(/—gL
1y = 2 0/ =gkm), 2)
/_g 691_]
We assumed here that the dependence of matter Lagrangian is on the metric
tensor g;; rather than its derivatives.
The trace of the energy tensor of matter is given by
T = ¢"T;. (3)
So in this case the stress-energy tensor of matter is

OLm

Tij = giij — 2769“ .

(4)

Varying the action S of the gravitation field with respect to the metric tensor
components g*, the field equations of f(R,T) gravity are obtained as follows

F(R,T)Rig — 5 (R, T)gis + (9150 ~ ViV ) fn(R,T)
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= 8IIT;; — fr(R,T)Ti; — fr(R, T)0;; (5)

where
af 62 L

91‘]' = —QTW + giij — 29 —agmagaﬁ .

(6)
Now here fr(R,T) = Bfg,#l, fr(R,T) = %, O = V'V; where V¢ is the

covariant derivative and T;; is the standard matter energy-momentum tensor.
Contraction of Eq. (5) yields

fr(R,T)R+30fr(R,T) — 2f(R,T) = 8T — fr(R,T)(T +6) (7)

where 0§ = 0:: . The above Eq. (7) gives a relation between the trace T' of energy-
momentum tensor and Ricci scalar R.

It can be seen that when f(R,T) = f(R), Eq. (5) yields the field equations of
f(R) gravity.

Now using Eq. (6), we get the variation of stress-energy. As there is no unique
definition of matter Lagrangian, the matter Lagrangian can be taken as Ly, = p.

Now using the Lagrangian Ly,, the stress-energy tensor of matter is given by

Ti; = (p + p)uiuj — pgijs (8)

where ui:(0,0,0,l) is the four velocity vector in the co-moving coordinate system
such that w’u; = 1 and uivjui =0, p and p are energy density and pressure of the
fluid respectively.

Then using Eq. (6), we obtain the variation of Stress-energy of perfect fluid as

eij = —2T7;j — Pgij- (9)

On the physical nature of the matter field,the field equations also depend
through the tensor 6;;.

Hence in the case of f(R,T) gravity depending on the nature of matter source.
We obtain several theoretical models for different matter contributions for f(R,T)
gravity. Harko et al (2011) gave three classes of model as

R+ 2/(T)
f(R,T) = f1(R) + f2(T) (10)
f1(R) + f2(R) f3(T).

In this paper we focus on all the three above mentioned cases. Firstly we focus
on the first case, i.e., f(R,T) = R+ 2f(T) where f(T) is an arbitrary function of
Stress-Energy tensor of matter. Now from Eq. (5) we get the field equations of
f(R,T) gravity as

1
Rij — 5Rgij = 8nTy5 — 2f(T)Tij — 2§ (T)0i5 + f(T)gij, (11)
where prime denotes differentiation with respect to the argument.

In perfect fluid the field equations become

1

Rg;; = 8nT;; — 2f' (T)Tij + [2pf'(T) + £(T)]gs;- (12)
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Then we focus on the second case, i.e., f(R,T) = f1(R)+ f2(T) where f1(R) is
an arbitrary function of Ricci Scalar and fo(7) is an arbitrary function of Stress-
Energy tensor of matter. For this case in perfect fluid the field equations develop
into

F(R)Rij — 5 1(R)gij = 87Tij + Fo(T)Tys + (D)o + 3 o(Dlgig. (13)

Finally we focus on the third case, i.e., f(R,T) = fi(R) + f2(R)f3(T) where
fi1(R) and f2(R) is an arbitrary functions of Ricci Scalar and f3(T') is an arbitrary
function of Stress-Energy tensor of matter. For this case in perfect fluid the field
equations develop into

UH(R) + 3(R) fs(D)Rs; — 3 1(R)gig

= 8Ty + Fa(R)FH(T)Tss + R(R)FH(D)p+ 4 fo(T)gis (14)
3. Field Equations and its solutions
We have considered a static, plane and symmetric space-time of the form
ds® = A%(dt* — da?) — B*(dy® + d2?), (15)

where A(t) and B(t) are the two anisotropic directions of the space and functions
of cosmic time only.
These functions are not equal due to radial asymmetry. The matter tensor can
be defined as
0;; = —2T;; — pgi; = (p, —p, —p, —p). (16)
Now the formulation of equations and their solution for each of the three cases
are shown.

8.1 Case I:
f(R,T) =R+ 2f(T). (17)

With specific function choice f(T") = AT, where ) is a constant, the field equa-
tions are obtained as

2B B? 2AB

w5t azpr ~ asp - BT (18)
B A2 i
m—ﬂ+ﬁ:(87r+3>\)p—)\p, (19)
B A A
W—F+F:(8W+3>\)p—)\p, (20)
24B = B?
ﬁ + W = —(87T + 3>\)p - )\p, (21)

where an overhead dot represents differentiation with respect to cosmic time ‘t’.
As Egs. (19) and (20) are same, therefore we have four unknowns namely A,
B, p, p and three equations. Without loss of generality we take

A=B™, (22)
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where ‘m’ is an arbitrary constant.
On solving the above Egs. (18) - (22) we get the solution as

A= (kit + ko)™?2, (23)

B = (k1t + k2)'/?, (24)

where k1 and k2 are arbitrary constants. p and p for this case are obtained as

L —(2m + 1)k:?
P=P= 8lan + 2 (kat + ;2)m+2' (25)
3.2 Case II:
f(R,T) = f1(R) + f2(T). (26)

With specific function choice f1(R) = AR and f2(T") = AT, where X is a con-
stant, the field equations are obtained as

25 B _r_gmirly, (30)

where an overhead dot represents differentiation with respect to cosmic time ‘t’.
As Egs. (28) and (29) are same, therefore we have four unknowns namely A,
B, p, p and three equations. Without loss of generality we take

A=DB", (31)

where ‘m’ is an arbitrary constant.
On solving the above Egs. (27) - (31) we get the solution as

A= (kit + ko)™?, (32)

B = (k1t + k2)'/?, (33)

where k1 and k2 are arbitrary constants. For this case p and p are obtained as

—\(2m + 1)k 2

P=P= 48 + N (kit + ka)mt2 (34)

3.3 Case III:
f(R,T) = f1(R) + f2(R) f3(T). (35)
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With specific function choice fi(R) = AR, f2(R) = AR and f3(T") = AT, where
A is a constant, the field equations are obtained as

2B B2  2AB 8p

A28 T A2B2 T ABB T A+ AZp—32%p’ (36)
B A? A 8mp
A28~ A% T A3 T N+ aZp—3a%p’ (37)
L
B A A _ 8mp (38)

A2B A% T A3 T A4 22p-—3A2%p’

PP .. <o -
% —%— ZEB]+(>\2p—)\—3)\2p)%+(6>\2p—2)\—2)\2p)i—g = 8mpA2,
(39)
where an overhead dot represents differentiation with respect to cosmic time ‘¢’.
As Egs. (37) and (38) are same, therefore we have four unknowns namely A,
B, p, p and three equations. Without loss of generality we take

(2A%p+22%p)]

A=B", (40)

where ‘m’ is an arbitrary constant.
On solving the above Egs. (36) - (40), we get the solution as

A = (kyt + ko)™, (41)

B = (k1t + k2)'/?, (42)

where k1 and ks are arbitrary constants. p and p for this case are obtained as

(mTz + 3+ %)/\Sy2 + (4mm + 2m) Ay

- , 43
p (16mm + 2m) A2y — (2m2 + 5 + 1)\4y2 — 642 (43)
81 — mAy
p=(—l "MV, 44
(m/\2y+*f1—y+87r)p (44
where
Kt
Y (45)

- (k1t + kg)m+2’
4. Physical and Geometrical Interpretations

In this section we define and study the physical and geometrical parameters of
our model. All the physical and geometrical parameters discussed below are same
for all the three cases. The volume scale factor ‘V’ and the average scale factor ‘R’
are obtained respectively as

V =+/(—g) = A’B® = (kat + ko)™, (46)

m+1

R=VY3= (kyit + ko)™ . (47)
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Fig. 2 R versus ¢ for (a) m =1, (b) m = 2 and (¢) m = 3 where k1 =2, ko = 1.

The model signifies that the spatial volume increases with increase in time and
points out the expanding nature of the space-time. The nature of volume scale
factor ‘V’ and the average scale factor ‘R’ can be inferred from Figs. 1 and 2
respectively for various values of constant ‘m’.

Analogous to this model the scalar expansion ‘0’ is given as

0=V = itk (48)
The Hubble parameter ‘H’ is given as
0 (m+1)k1

T3 3(kit + ko) (49)
which comes out to be a function of ‘¢’.

Measure of the cosmic accelerated expansion of the universe is defined by the
deceleration parameter ‘q’. Value of the deceleration parameter governs the nature
of the space-time. Positive value indicates decelerating model whereas negative
value indicates accelerating model. Now, we define the decelerating parameter ‘g’

as .
—RR
q= 2 (50)
For our model the value of ‘q’ is obtained as

). (51)

m—2

=1
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The deceleration parameter attains the following values depending on different
values of m

>0 0<m<?2
g=<¢{=0 m=2 (52)
<0 m>2.

06

Fig. 3 g vs m where 1 <=m <=10

Hence the model shows decelerating nature for 0 < m < 2, remains stagnant at
m = 2 and accelerating nature for m > 2. Behavior of the deceleration parameter
‘q’ with constant ‘m’ is shown in Fig. 3.

The Shear scalar ‘o’ is defined as follows

=iy (53)
2 * 3"
For our model it comes out to be

2 (2—m? — 8m)k?

7T 24kt + k2)? (54)
The Ricci scalar for all the models is found to be
R = (kit+ ko) ™% (55)

Ast -0,R— Ic2m3+1 and as t — oo , R — oo. Therefore, it can be seen that the
curvature of the space-time is increasing continuously with time and approaches
infinity at infinite time. The trace of the stress-energy tensor ‘T” for the three cases
are respectively as follows

4.1.1 Case I:

_ (2m + 1)k12
= 4(4m + ) (k1t + kg)m+2” (56)
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4.1.2 Case I1I:

A(2m + 1)k 2

T = 2 Br + N kit + ka)™¥2 (57)
4.1.8 Case I11I:
2,4 My
= dmA°y + )\;1 167 ). (58)
mA2y + 3% + 8w
where ,
(16rm + 2m) A2y — (2m2 + 3 + L)A4y2 — 6472
and )
_ k1
Y= leat + kg)mt2” (60)
Now, the function f(R,T) for all the three models are as follows
4.2.1 Case I:
B B mt1 (2m + 1)k12
4.2.2 Case II:
_ _ mt1 A2m + 1)k, ?
4.2.8 Case III:
mi1 AmA%y + X¥ — 167
F(R,T) = AR(L+T) = [(knt +k2) ™57 (1 4+ A(— 20— L= 2T)p)], (63)
mA2y + 5% 4+ 8x
where )
. (% + 2 + X% + (drm 4 2m))y (64)
(16mm + 2m)A2y — (2m2 + 3 + 1)\4y2 — 6472
and )
y a (65)

- (k1t + kg)m+2°

The geometrical nature of the model is described by the state finder diagnostic
pair {r, s} which are defined as

"= RES (66)
and 1
.
PR ek 2 (67)
3(a-3)

For all the three models discussed above the state finder diagnostic pair {r, s}
is found to be
- (m —2)(m —5)

(m+1)2 (68)
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Fig. 4 r vs s where 1 <=m <= 10

and
=2 (69)
(m+1)’
where m is an arbitrary constant. Fig. 4 depicts the plot of state finder diagnostic
pair r with s.

5. Conclusions

The cosmological models of the universe has been framed in an anisotropic
space-time with the three choices of f(R,T) gravity. The dynamical parameters
are derived with an assumption between the scale factors. The physical parameters
of the models are studied along-with the state finder pair. The models presented
here provide a systematic mathematical derivation and the graphical representa-
tion shows the physical viability of the model. We conclude that further physical
investigations can be performed to get more insight to its behavior.
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