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Covariant formalism for the Berry connection due to gravity
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Abstract: It is well-known that Dirac particles gain geometric phase, namely Berry
phase, while moving in an electromagnetic field. Researchers have already shown
covariant formalism for the Berry connection due to an electromagnetic field. A
similar effect is expected to happen due to the presence of Gravity. We use WKB
approximation to develop a covariant formalism of Berry-like connection in the
presence of Einstein gravity, which can be further used to describe the Berry-like
phase or simply Berry phase. We also extend this formalism for massless Dirac
particles (Weyl particles).Then we further show that this connection can be split
into two parts, one of which vanishes when the metric is spherically symmetric and
thus can be linked to the Aharonov-Bohm-like effect in the 3 4+ 1 formalism. At
the same time, the other term can be related to the Pancharatnam-Berry like effect.

Keywords: Covariant formalism; Dirac particles; Weyl particles; Berry con-
nection

1. Introduction

Berry phase is a well-known geometric phase that has been adequately de-
scribed in the evolution of spinors in the presence of an electromagnetic field. We
expect that gravity should also cause a similar effect. Indeed we use WKB ap-
proximation for Dirac and Weyl particles to describe a covariant formalism for the
Berry-like connection which can be further used to define Berry curvature, and
to describe the evolution of the Berry-like phase of a particle as it moves in the
presence of gravity. We perform the calculation of this covariant Berry connection
for Dirac particles (massive spin-half) and Weyl particles (massless spin-half).

The derivation we perform is based on a previous work [1], where Stone used
WKB approximation in the Dirac equation to get the expression for Berry Con-
nection in the presence of an electromagnetic field. We have a similar approach,
but we start from the Dirac equation in curved spacetime, where the derivative is
replaced by the spinorial covariant derivative. We see that this leads to a significant
change in the equations that we get after using the WKB approximation.

Once we have the expression for Berry connection due to gravitational effect,
we would see that it can be split into two parts, one of which would vanish in
the case of spherical symmetry. We will see that these terms can be defined as
Pancharatnam-Berry-like (retained already) and Aharonov-Bohm-like (vanished
in spherical symmetry), linking it to the 3 4+ 1 formalism of the geometric phase.
Earlier it was found [2,3,4] that in 3 + 1 formalism, during the evolution of spinors
in the presence of gravity, we obtain a Pancharatnam-Berry-like and Aharonov-
Bohm-like term. Thus we expect the covariant formalism to show similar behavior,
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which we show through our calculations.

2. The Modification to Newtonian gravity

We start with the Dirac equation in curved spacetime. A Dirac field ¥(z) with
a mass m satisfies

(ihy* (V) — m)¥(z) =0, 1)

where v#-s are the spacetime gamma-matrices which are related to the flat space-
time gamma-matrices by v* = e5v?, e§ is the tetrad, the Greek and Latin indices
imply respectively curved and flat coordinates, and V is the covariant derivative
of spinors which is defined by a spin connection. The spinor derivative acts on the
spinor field as

V(@) = (O + 20 (a), (2)

where (2, is defined as

i 1
2 = ~ qwarn(@)0™ = guap (@), 7] (3)
Now we use the WKB ansatz
U(z) = ae_ihe, (4)

where a = ag + ha1 + h%az + ..., also dup = pu = (E, —p). We consider the equa-
tions until the order of h! and use them to reach to our covaraint Berry connection.

3. Dirac Particles

This is the case where m # 0. At the order of #° we obtain
("*Pu — m)ao = 0.

Considering uq to be the complete set of eigenspinor solutions of the above equa-
tion such that

(VP —m)ua =0, (5)

a0 = ua(p)C(z)* where C is the complex number.
At the order of k', we then obtain
i(v"Vuao) + (vpu — m)ar = 0. (6)
We would also need the relation for the four-current of Dirac particle which is

_ o p” (4
ugy ua = 66&% =dgaV". (7
Using Egs. (5)—(7) and the completeness and normalization of uq, it can be

shown that
1

(JQQV‘“V,L + 2

Sap ViV  + %vﬂ(aav#uﬁ ~ Vuiiaug))C = 0. ®8)
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Here when we apply V, to V¥ we are considering the covariant derivative
for tensors which comprises of the Christoffel connection. We are using the same
symbol V, for both spnior covariant derivative and covariant derivative for tensor
fields. This should not cause any confusion, since the type of covariant derivative
can be determined by the object on which it acts on.

Now we can define our covariant Berry connection as

%, _
Buog = §(uavﬂuﬁ — Vyuiiaug), (9)

which can be used to define berry curvature and to describe the Berry phase that
a Dirac particle gains due to gravity. The details of the above derivation can be
found elsewhere.

4. Weyl Particles

In this case we consider spin half particles with mass m = 0, Thus the Dirac
equation for massless particles is

YV (z) =0. (10)

We use here Weyl representation for the gamma-matrices to make our calcu-
lations easier. We see that this case is significantly different than the last case
because, first of all, the Dirac equation does not have A, which we used as a pa-
rameter in the last case. Hence, we define a small parameter ¢ and expand our
solution in terms of that. We further seek WKB solution and choose

U(z) =ae *, (11)
where a = ag +eay +€2az + ..., also dup = p,, and e is the small parameter. Similar
to the case of Dirac particles, we substitute Eq. (11) in Eq. (10) and expand in
the orders of e. Considering terms upto the order °, we have

oy (ﬂ) o1 4 A (T pa0)e= b pare (ﬂ) —ivle_g

€

Y ao (ﬁ) +7*(Vuao) + v*a1(~ipu) = 0.
At the order of ¢! we obtain

7puao = 0. (12)

Let U, and Ug be respectively the left-handed and right-handed eigenspinor
solutions of Eq. (12) with positive energy (pp > 0). Similarly V;, and Vy be respec-
tively the left- and right-handed anti-particle eignespinors (pg < 0). Thus we can
say that ap = Ua(p)C(z)® where C® is the complex number and « € {L, R}.

At the order €°

YWV uao —ivFpuar = 0. (13)
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Pre-multiplying Eq. (13) with Ug where 8 € {L, R} and using Ugy"p, =0, we
obtain ~
Ug(v*Vyao) = 0. (14)

Similarly, expanding ag = UaC“, we obtain
(057" Ua)VuC® + (U1 VaUa) C° = 0. (15)

Now we need to use a relation for the four-current to isolate the Berry con-
nection. However, clearly, simply putting m = 0 in the relation that we used in
the massive case described in Section 3 would not work because the RHS diverges
in Eq. (7). It is possible to derive the relation for the four-current if we use the
two-spinor representation for the Eigen spinors. We know that the four-spinors
can be written in terms of the two-spinors as

Uy = (“OL) and Up = (UZ) , (16)

U = (0,u}) and Ug = (ul,,0), (17)

0 o¥
B
T A (18)
where ¢ = (1, —0) and o* = (1,0) and ua-s are two-spinors. Note that in Egs.

(16) and (17), O represents and similarly in Eq. (18) it represents 2 x 2

0
0
null matrix. Same relations are valid for antiparticle four-spinors Vi and their
corresponding two-spinors ve.

Substituting these relations is Eq. (10) we can derive the relation for the four-
current in this case. The details of this calculations can be found elsewhere. We
will finally obtain that

T Up = —6,57 = —6,5 P = 6, 5H" (19)
a”y Up aﬂpo aﬁpues af s

where o, 8 € {L, R}. We see that the quantity H* is frame-dependent because of
the fact it contains e, which is different from the massive case. This is because
of the fact that for a massless particle, there is no rest frame. This is the reason
that the expression that we obtain for the four-current is also observer-dependent.
Using Egs. (19) and (15), it can be shown that

1 1, _
(CapH"Vu + 50asVul" + S H (Uar°VuUs — Vular"Up))C” = 0. (20)

The details of these calculations can be found elsewhere.
Now similar to the massive case, we can define the Berry connection as

i - _
Buap = §(Ua70VMU5 — VuUar’Up). (21)
Here we see that we have extra 7° in the expression when compared to the

massive case which is due to the fact that we are using Weyl’s representation of
gamma matrices.
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5. Pancharatnam-Berry-like and Aharonov-Bohm-like terms

Now in the massive case we would use Eq. (2) in Eq. (9) to isolate the Pancharatnam-

Berry-like and Aharonov-Bohm-like terms. Taking adjoint of Eq. (2) we have
V“uL = 6;4“& + UL(QM)T- (22)
It can be shown using Eq. (3) that (£2,)" = —402,70. Thus using this and
multiplying o from the right in Eq. (22) we obtain
Vuiia = Ouiia — ia 2. (23)
Substituting Egs. (22) and (23) in Eq. (9), we obtain

Biias = 5 [(ﬂa({hulg — Oufiaug) + 2(aarzuuﬂ)]. (24)

Only the term 2(uaf2,ug) is due to the spinor connection. The rest of the
terms are also present in the case of flat spacetime and correspond to the Berry
connection in flat spacetime [1]. Thus we can say

Buap = BJS + i(a Quup). (25)

Now we can split this extra term to seperate the Pancharatnam-Berry-like and

Aharonov-Bohm-like terms. We can expand the term

(wabv) (ﬂa ['Yaa 7b]uﬁ)s (26)

oo

ﬁaﬁyug =
Hence,
_ 1 _ _ _ . .
Uaflvug = g(wozwua[vo, VJug + waou@alr®, 1 lug + Gawiju v’ v lug),  (27)

where 4, j € {1,2,3}, which can be simplified as

~ 1 _ ) 1 L
Tal2vug = g((wow — Wiy )la [’yo,'yl]uﬁ) + gwij,,ua['yz,'yj]Uﬁ. (28)

Now the second term of R.H.S. vanishes when the metric is spherically sym-
metric. If the metric is spherically symmetric then w;j, is non zero only when
i = j but then [y*,4?] = 0 thus making the term jw;j,%a[v",7’]ug = 0. There-
fore, we can define the first and second terms as Pancharatnam-Berry-like and
Aharonov-Bohm-like respectively. Thus we have

7: _ . 7/ _ . .
Buap = Bloj + g (woir — wiow)alv’, 7' Tug) + gwiavlaly', v lug. (29)

6. Conclusion

‘We have found the covariant description of Berry connection for spin half par-
ticles. The connection that we have derived is in the absence of an electromagnetic
field. The same calculations can be repeated considering the electromagnetic field
as well, and we would get a similar result, but the final expression would contain
additional terms with Fj,. These calculations can be found elsewhere. We have
found a similar expression for the Berry connection in the massless case. However,
the connection there is an observer-dependent quantity, unlike the massive case.
This can be attributed to the fact that there is no rest frame for a massless particle.
Finally, we have found that it is possible to isolate the Pancharatnam-Berry-like
and Aharonov-Bohm-like terms from the Berry connection. The last result was
also observed in the 3 4+ 1 formalism of the geometric phase [2,3,4].
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