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Cosmological Models with scale factors in f(T) gravity
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Abstract: In this work, we have studied the cosmological model framed in an
isotropic background in the f(T) theory of gravity. The field equations are derived
and the dynamical parameters are studied with two different type of scale factors
that favours early deceleration and late time cosmic acceleration. The model is
showing an accelerating behaviour which can be confronted from the behaviour of
geometrical parameters. We also analysed the violation of null energy condition
and strong energy condition. To study the dynamics of the universe cosmographic
parameters has been investigated.
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1 Introduction

In contemporary cosmology, the study of late-time cosmic acceleration events has
been a significant focus. Supernovae of type Ia give strong evidence that the Uni-
verse expands at lightning speed. Cosmography is an appropriate method for inves-
tigating the cosmic expansion history in an almost model-independent approach,
based on the hypothesis that the Universe is homogeneous and isotropic on large
scales. Theoretical research and cosmological measurements of the Universe show
that the Universe went through an inflationary phase at the beginning and an
accelerated degree after that. It is theoretically possible to accomplish this in two
ways. The content of the Universe is altered in the first method by adding new
fields such as phantom scalars, canonical scalars, vector fields, etc. [1,2]. Modify-
ing the gravitational sector [3] is the second technique. Teleparallel gravity [4,5]
is a gravity theory that describes gravitational effects in terms of torsion rather
than curvature, using the curvature-free Weitzenbock connection [6] to define the
covariant derivative instead of the conventional torsionless Levi-Civita connection
of general relativity (GR). It is comparable to GR in its most basic form, but it
has a distinct physical meaning [5].

The Levi-Civita connection in GR denotes curvature but no torsion, whereas
the Weitzenbdck connection in teleparallelism implies torsion but no curvature [6].
The dynamical objects in this framework are the four linearly independent tetrad
fields that provide the orthogonal basis for the tangent space at each point of
space-time. The torsion tensor is also made up of the first derivative products of
tetrad. A plethora of observations during the last two decades have confirmed the
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late-time cosmic acceleration of the Universe. These observations have developed
a curiosity among the cosmologists to explain this late time dynamics. GR on its
own fails to explain this expansion. Hence the idea of modifying GR has taken mo-
mentum in the last decade. Researcher are motivated to change either geometrical
part of the field equation or the matter part. In f(R) gravity theory, the scalar
curvature R in the Einstein-Hilbert action is changed to a suitable function f(R).
In another modified gravity theory known as teleparallel gravity, instead of cur-
vature, torsion represents the gravitational interaction. Further, a generalization
to teleparallel gravity (similar to f(R)) has been developed [7,8,9,10,11,12,13,14,
15] by replacing torsion scalar T' to a generic function f(T"). This modified gravity
theory is termed as f(T') gravity theory and Linder coined the name.

Moreover, there are two important differences between these two theories first
one is the field equations in f(T') gravity theory remain second order while one
has fourth order equations in f(R) and second theory is f(T') gravity theory does
not satisfy local Lorentz invariance (which is satisfied by f(R) gravity) so that
all 16 components of the vierbien are independent and hence it is not possible to
fix six of them by a gauge choice [16]. The scalar perturbation technique is used
to create the perturbed evolution equations, and the stability of the models is
demonstrated in teleparallel gravity [17]. The vierbeins are parallel vector fields,
which give the theory the descriptor teleparallel. The advantage is that the torsion
tensor is formed solely from products of first derivatives of the tetrad. The presence
of some exotic energy known as dark energy results from the change in the matter
portion, and the difference in the geometric part results in extended gravity. The
addition of dark energy to Einstein’s equations as continuous stress has helped
explain this expansion. The most exciting aspect is that, while we do not know
the exact nature or origin of this energy, cosmologists agree on what it is not.
Recent Planck data estimates a lion share of 68.3% in favour of dark energy. The
late time cosmic dynamics and the consequent dark energy is understood through a
dark energy equation of state parameter w = 2, where p and p respectively denote
the pressure and energy density of dark energy. According to observations, the
equation of state give value =-1 at present time. More generally, the expansion of
the universe is accelerating for any equation of state w < _Tl Several data sources,
including the Pantheon supernovae sample, Hubble constant measurements cosmic
microwave shift parameter, and redshift-space distortion measurement, have been
used to restrict f(T') gravity [18]. Pati et al. [19] have shown the cosmological
models with LR, BR and PR Scenarios in the non-metricity gravity. In Ref. [20],
the impact of violating the equivalence principle in the electromagnetic domain on
f(T) gravity is explored.

2 f(T) Teleparallel Gravity

A particular modified theory of gravity which has attracted the interests of cos-
mologists is so-called f(T') teleparallel gravity. Inspired by the formulation of f(R)
gravity, in which the Lagrangian of the gravitational field equations is a func-
tion, f, of the Ricci scalar R of the underlying geometry, f(T) gravity is a similar
generalization. The associated dynamical fields are the four linearly independent
vierbeins, and T being connected to the antisymmetric connection resulting from
the nonholonomic basis.



The action of f(T) gravity is

1
51 = 16 /d4ze (F(T)) + Sm, 1)

in which e = det(el) = v/—g
In the holonomic frame the space time has the line element

ds? = —dt® + a®(t)(dz? + dy? + d2?), 2)

where a = a(t) be the cosmological scale factor.
For this frame the torsion scalar, which depends on the signature of the metric,
is

T:6(%)2:6H2, (3)

where H is the Hubble parameter.
We take f(T) as

f(T)=T+a(-T)" (4)
For this model we obtain field equations as

12Hf7(T) + f(T) = 167G, ()
48H?H frr(T) — A(H + 3H?) fr(T) — f(T) = 167Gp, (6)
where p is the dark energy density and p is the pressure of the dark energy.

From Egs. (4), (5) and (6) we obtain the pressure, energy density and the
equation of state parameter w in terms of Hubble parameter as

6H? — (2n — 1)a(6H?)"

p= 16Gr ’ (™)

_ —4H —6H? + a(2n — 1)(6 H?)" " (4nH + 6H?) 8

P= 16Gr ’ (®)

. —4H — 6H% 4+ a(2n — 1)(6H%)" " (4nH + 6H?) )
6H2 — (2n — 1)a(6H2)" :

3 The Cosmological Models

In order to understand the background cosmology, we need to incorporate the scale
factor to obtain the solution to the field equations. We will consider two different
Hubble parameters and derive their respective pressure, energy density,equation
of state parameter, deceleration parameter, snap parameter and jerk parameter.

To handle Egs. (7) and (8), which are highly non-linear, we assume the hybrid
scale factor (HSF), a(t) = tfe"?, such that H = v+ £, where p and v are the
arbitrary parameters and can be constrained in the ranges v > 0 and 0 < p < 1 [21,
22,24,23]

Cosmological Models
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The Hubble parameter we consider to analyze the dynamics of the Universe
are

1
T2 —t)([@Ar—1)’

H=u+% (11)

H (10)

We consider relation of parameters with respect to redshift parameter z to do
our analysis. We are using a(t) = ﬁ to get the desired relation.

For Eq. (10) we get t in terms of z as

2A(1 + 2)*

p=on— A0 tE) (12)
V1t (14 2)8¥
and for Eq. (11) we get ¢ in term of z as
-1
t= g * ProductLog[M]. (13)

3.1 Scale Factor a(t)

We are using FLRW line element to obtain scale factor from Hubble parameter
and for Eq. (10) we obtain scale factor as

a(t) = (£)537 (£ — AN) 37 (¢ — 20) D2 . (14)
For Eq. (11) we obtain scale factor as
a(t) = tHet. (15)

The kinematic property is universal, making it easy to explain the expansion
of the cosmos, but the dynamic property is model-dependent. We will use a kine-
matic approach in this case. We used the FLRW space-time, which is homogeneous
and isotropic, to model development of the Universe. The scale factor is used to
characterize rate of expansion of the universe.

3.2 Deceleration Parameter (g)

To obtain g we use the relation ¢ = =1 %H ~2 which for Eq. (10) yields
g=—1+3t2+8)\% — 12X, (16)
and for Eq. (11) we obtain g as

g=-1+ (17)

_r
(vt+p)?

We use Egs. (16) and (17) to plot relation between g and redshift parameter.
The values of v and p in Eq. (11) are taken in such a way that it shows deceleration
in the initial cosmic time and then acceleration in the later cosmic time so that
it overlaps with the observations made till now. Value of X in Eq. (10) is taken as
0.5 value of v and p in Eq. (11) is taken as 0.585 and 0.2 respectively.
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Fig. 1 Behaviour of the deceleration parameter for H = W (Upper Panel), H =

v+ £ (Lower Panel)

3.3 Jerk Parameter (j)

To obtain j we use the relation j = %%H‘s. For Eq. (10) we obtain j as
j=1+1283* —24A2 +3 (88,\2 - 3) £2 — 96At> 4 12¢* + 36X (1 - 8,\2) ¢, (18)
and for Eq. (11) we obtain g as
 2u+ (ptvt) [(p+ vt)? - 34
T (n+vt)3 '
We use Egs. (18) and (19) to plot relation between j and redshift parameter.
The jerk parameter for Eq. (10) decreases slightly in the initial cosmic time and
then increases in the later cosmic time (Upper Panel of Fig. 2) while for Eq. (11)

it decreases in the initial cosmic time then increases slightly in the later cosmic
time (Lower Panel of Fig. 2).

(19)
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Fig. 2 Behaviour of the Jerk parameter for H = m (Upper Panel), H = v+ &
(Lower Panel)

3.4 Snap Parameter(s)
To obtain s we use the relation s = %%H“‘. For Eq. (10) we obtain s as

s = (—3480A% + 75)t* 4+ (—600X + 86402%)t> + (—119041* + 163222 — 18)¢?
+(9216X5 — 1728)3 + 72))t — 3072A° + 704X* — 48)% + 1+ 720A¢° — 60¢°,
(20)

and for Eq. (11) we obtain s as

(1 =3)(n—2)(n— )p + 4 put® + 602 ( — pt® + v*t* + dv(p — 2)(p — Dt
(k+vt)* ’

s =

(21)

16
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Fig. 3 Behaviour of the Snap parameter for H = m (Upper Panel), H = v + &
(Lower Panel)

We use Egs. (20) and (21) to plot relation between snap parameter and redshift.

In the literature, there are two significant geometrical diagnostic approaches.
They are the Om(z) diagnostics and the determination of the state finder pair
(4,s) in the j — s plane. These geometrical diagnostic techniques [25,26] can help
discriminate between dark energy theories. The snap parameter for Eq. (10) in-
creases while the snap parameter for Eq. (11) decreases parabolically over the
cosmic time.

3.5 Energy density (p)

We are using Eq. (7) to obtain p from the respective Hubble parameters.

Cosmological Models
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For Eq. (10) we obtain p as

3 ab™(2n —1 1
- eweno) (

n
: 22
12 (8X2 412 — 6At)? 2 12 (8A2 + 2 — 6,\t)2) (22)
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Fig. 4 Behaviour of the energy density for H = m (Upper Panel), H = v + %
(Lower Panel)

For Eq. (11) we obtain p as

e ) Sy =

We use Egs. (22) and (23) to plot relation between energy density and redshift
parameter.

The choice of n in both the Egs. (22) and (23) have been considered in such a
manner that, the energy density remains positive throughout the cosmic evolution
of the Universe.
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3.6 Pressure (p)

We are using Eq. (8) to obtain p from the respective Hubble parameters.
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Fig. 5 Behaviour of the pressure for H = m (Upper Panel), H = v+ % (Lower
Panel)

For Eq. (10) we obtain p as

n
n—1 1 2 2
— " (20— 1) (t2 T 6,\t)2> (2n (SA 432 - 12)\1‘,) - 3) .

(24)

_ 16X% +6t2 — 240t -3
£2 (8A2 4 12 — 6AL)?

For Eq. (11) we obtain p as

4p+ 23" 1(1 — 2n) (2un —3(u+ ut)2) (v+ %)2(11—1) — 6(p + vt)?
p =

» . (25)
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We use Egs. (24) and (25) to plot relation between pressure and redshift pa-
rameter. The pressure is negative in both implying the force of anti gravity which
explains the accelerated expansion of Universe.

3.7 Equation of State Parameter (w)

We are using Eq. (9) to obtain w from the respective Hubble parameters.
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Fig. 6 Behaviour of the EOS parameter for H = m (Upper Panel), H = v + &
(Lower Panel)
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For Eq. (10) we obtain w as

6(1612+6t>—24t—3)
t2(8A24+t2—6At)?

—ab™(2n— 1) (m)n (2n (8A2 + 32 — 12Xt) — 3)

2 ab™(2n—1) 1 n
t2(8AZ+t2—6At)% 3 t2(8A2+1t2—6At)2
(26)
For Eq. (11) we obtain the EOS parameter (w) as
- 2(n—1
e 4p+ 23" (1 — 2n) (2un — 3(u+ Vt)2) (v+15) (1) _ 6(n+ l/t)2.
t2 (6 (v+ %)2 —ab"(2n—1) (v + %)271)
(27)

We use Egs. (26) and (27) to plot relation between w and redshift parameter.
The equation of state parameter decreases from a value less than _Tl at an initial
epoch to negative values at late times in both the cases which follows in line with
scientific observations. The parameters v and regulated the evolutionary behavior
of the dynamical and EOS parameters. The first step was to constrain the scale
factor parameters to get the geometrical parameters in the required range. Then
the model parameter was constrained to produce the positive energy density (see
Fig. 4 and Fig. 6).

3.8 Energy Conditions

Three energy conditions were checked to confirm the viability of both Hubble
Parameters. Hence, we present here

(a) Null Energy Condition (NEC): p+p >0,

(b) Weak Energy Condition (WEC): p > 0; p+p >0,
(c) Strong Energy Condition (SEC): p+3p >0

(d) Dominant Energy Condition (DEC): p—p > 0.

The violation of the strong energy requirement has become so crucial in mod-
ified gravity theories, it is now threatened with extinction. The energy conditions
NEC, WEC, SEC, and DEC for this f(T') gravity model are currently as follows:

Except for the DEC, all models are expected to violate the energy conditions
since they evolve in the phantom phase. Figures 7 and 8 graphically depicts the
behavior of the energy conditions for the introduction of the Hubble parameters
model in order. Only DEC is satisfied in the appropriate range for all three models,
but WEC and SEC are violated as predicted. For Eq.(10) energy conditions are
satisfied only in the later cosmic time and not during the initial epoch which does
not support the observations where as for Eq. (11) all the energy conditions are
satisfied during the entire cosmic time.
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4 Conclusion

The physical parameters of the cosmological models are derived using the Hubble
parameter H(t) = m and H(t) = v+4. The equation of state parameter,
from where the nature of Universe during evolution would be known, has been
derived with respect to the cosmic time. The energy conditions for these two
scale factors are derived along with the physical parameters such as deceleration
parameter, snap parameter and jerk parameter are also derived with respect to
the cosmic time. The scale factor used in this yields a deceleration parameter
that is positive early and negative at late time. Relation between cosmic time ¢
and redshift parameter z is also been derived. The graphical representation of the
parameters were presented and their behaviours were analyzed. The accelerating
behavior of the models under a modified theory of gravity is further validated by
the violation of SEC.
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