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Abstract: This paper describes bifurcation phenomena of a PWM controlled dc shunt drive. Bifurcation
behavior of the system is observed by varying system parameters. The route of transition from periodic
behavior to chaos has been investigated and quantified by maximum Lyapunov exponent. The stability of
the system is found out using the state transition matrix over one switching cycle (the monodromy matrix)
including the state transition matrices during each switching (the saltation matrices). The parameter
values at which the nominal period-1 orbit loses stability is determined.
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1. Introduction

Chaos is an aperiodic long-term behavior of a deterministic system that exhibit sensitive dependence of initial
condition. Most of the systems available around us are nonlinear in nature. But much time and energy is spent in
understanding a linear system. Moreover, analysis of nonlinear system is also carried out with the help of theory
developed for linear systems. This analyses the behavior of a nonlinear system by local linearization. But there are
limitations of the analysis of nonlinear system in the light of linear control theory. This approximation fails to reveal
actual behavior of the nonlinear system. A fascinating phenomenon of a nonlinear system is the occurrence of chaos.
This behavior of a nonlinear system is not due to noise and complexity of the system. It is inherent behavior of a
nonlinear system. Chaos theory provides tools to carry out this analysis.

A DC drive is extensively used in the industry. The knowledge of the behavior of the DC drive is of great
importance for its proper functioning and design. Since the DC drive is nonlinear in nature, chaos occurs in this
system. The occurrence of chaos and routes to chaos has been investigated in the light of chaos theory.

Chau et al. [1] investigated the nonlinear dynamics and chaotic behavior of chopper fed permanent magnet motor
drive. Chakrabarty et al. [2-6] reported chaos in dc series drive by numerical simulation. A technique based on
Filippov’s method of differential inclusion [7] has been employed to analyze the stability of mechanical switching
system [8], dc-dc converter [9], full bridge converter fed drive [10] and Photovoltaic system [11].

In this paper, the dynamic behavior of the DC shunt drive has been investigated to find out the dependence of
different parameters in the system. Chaotic dynamics of the drive are then discussed. The stability analysis of the
period-1 orbit of the drive is performed by the derivation of saltation and monodromy matrices of the system.

2. Mathematical model

The block diagram and equivalent circuit of the DC drive circuit is shown in the Figs. land 2 respectively. The
output of the speed sensor (W) is compared with the reference speed (W, in the comparator A;. The difference of
(W-W,y) is compared with a ramp voltage. The output of the comparator A, is used to switch on the switch for the
chopper drive. When control voltage exceeds ramp voltage, power switch of the chopper is off and diode is on;
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otherwise, the power switch is on and diode is off. The system is linear in nature except the switch. The chaotic
behavior of the system is due to switching nonlinearity.
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Fig.1: Schematic diagram of DC shunt drive
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Fig. 2: Equivalent circuit of DC shunt drive

With reference to Fig. 2, i (t) is the armature current, R, , armature resistance, L, , armature inductance, V, supply
voltage, Kr , back emf constant, Kr, torque constant, B ,viscous damping, J, load inertia and 7; load torque.

.
La®  =-Ri- K,w+V
dt '

The system equations are given by de 1)

J =K,i- Bw-1T,
dt

Motor speed, ® , is controlled by naturally sampled constant frequency pulse width modulation. The operational
amplifier 41 has gain G. The control signal, V., (1) =Glw(1) - w,., ()] where, «(Z) and @, are

instantaneous motor speed and reference speed respectively, compared with a ramp signal ¥/ in the

ramp

ramp

t
comparator A, The ramp is given by V =V, +W, -V, )7 ,where V7, and ¥, are upper and lower levels

of ramp having period 7.



3 Dynamic behavior of PWM Controlled DC drive

The chopper fed shunt motor drive operates in the continuous current mode. The system can be divided into two
stages depending on the switching conditions.

The switch will be on when V¢, <Vmp. The corresponding system equations are

“Ra - K, v
4 i) —| La La || 1) +| La ®
dt|o(n| | K - B |low| |-1)

J J J

The switch will be off when Veo>Viump. The corresponding equations are

-Ra - K, 0
(! P PRIR .
i i(r) —| La La || 10 +- T 3)
dijo(| | K - B |lo) ;
J o '

By defining the state vector x(t) and the following matrices A, E; E,  The system can be rewritten as

\(,) =Ax(1)+ E > where K= 1, 2. K changes the value depending on ‘On’ or ‘Off’ condition of the switch.

Thus, the closed loop drive system is a second order non-autonomous dynamical system.

3. Bifurcation behavior

In order to study dynamic behavior of the DC drives, parameters of the drive system are as follows: V=0, Vu=2.2,
T=8ms, G=0.8, Ra=7.8Q, La=30. mH, B=0.000654,J=0.000971,T/=0.5 Nm, w:y =100 rad/sec. Kr=0.1324,
Ke=0.1356.

The drive has been simulated with SIMULINK of MATLAB as shown in the Fig. 3.

Fig. 3: Equations of the drive simulated with SIMULINK



Chakrabarty et al. 4

The dynamic behavior of the DC drive can be found from the bifurcation diagram drawn with different parameters
value. The bifurcation diagram with input voltage as the parameter is shown in Fig. 4. It is essential to study the
occurrence of chaos due to the variation of system parameters. When bifurcation occurs, an abrupt change in the
steady state behavior of the system also occurs. A bifurcation diagram represents all plots of the steady state orbits
as a function of a bifurcation parameter.
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Fig. 4: Bifurcation diagram with input voltage as parameter and plot of maximum Lyapunov exponent

This shows that a period doubling route to chaos is followed. The occurrence of chaos is quantified by maximum
Lyapunov exponent.

The Period-1 behavior is observed up to input voltage, 120V. Fig. 5 shows the simulated waveform of armature
current for period-1 orbit at input voltage 100 V. Fig. 6 shows the time plot of speed and phase plot of armature
current and speed for the same voltage. Bifurcation to different periodic orbit and chaos is observed with the
increase of input voltage. The system bifurcates to period-2 after period-1. After period-2, period-4 behavior starts
at a voltage of 158 V and continues up to 170 V. Period-8 behavior is observed after that. The period-8 converges
to chaos at 170.5 V.

The period-2 sub harmonic waveform is shown in Fig.7. The period-2 behavior changes to period-4 after that. The
period-4 behavior that occurs at 160V is shown in the Fig. 8. At input voltage of 170.5, the system shows period-8T
sub harmonic (Fig.9, 10 ). Finally chaotic behavior of the drive is shown in Fig. 11.
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Fig. 5: Time plot of armature current showing P-1 at input voltage 100 V
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Fig. 7: Time plot of armature current, speed and phase plot showing P-2 at input voltage 150V
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Fig. 11: Time plot of current, speed and phase plot showing chaos at input voltage 200 V

Fig. 12 shows the bifurcation diagram with gain as the parameter. The period-1 behavior is observed up to gain
0.32. The period-1 bifurcates to period-2 at 0.33. The period-2 continues up to gain 0.43. Then period-4 starts.
After that the period doubling route to chaos is followed There are periodic windows in the chaotic zone. Period-1
behavior is observed at gain of 1.74. The evidence of periodic windows in the chaotic zone is evident from the plot
of Lyapunov exponent. For periodic orbit Lyapunov exponent is negative and it is positive for chaos.
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Maximum Lyapunov Exponent
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Fig.12: Bifurcation diagram with gain as parameter & plot of maximum Lyapunov exponent.

The bifurcation behavior with load torque as parameter is shown in Fig. 13. This behavior is the reverse of
behaviors shown in Fig. 4 and Fig. 12. The system shows chaotic behavior at lower value of torque. With decrease
of value of torque, period 1 bifurcates to period 2 and then to chaos.
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Fig.13: Bifurcation diagram with load torque as parameter

4. Stability analysis of Period-1 Orbit

We are interested in the stability of period-1 orbit of the DC drive for its normal operation. This orbit starts at a
clock instant and comes back to the same state at the end of the clock period. The DC drive is not a smooth system.
The equation of evolution during switch on and switch off and vice versa are smooth as shown in equation (2&3).
However, at the instant of switching, the evolution becomes nonsmooth. Filippov [8] showed that in such a situation
one has to additionally consider the evolution of the system across the switching event. It is known that in linear
time invariant (LTI) system, the state transition matrix is given by the ¢ =c" where 4 is the state matrix. The
basis of the Filippov’s method is to find out state transition matrix over the complete cycle including switching. The
whole cycle include the switch on duration, switch off duration and switching instants. The state transition matrix
that relates the evolution just after the switching event to that just before is called the saltation matrix, S and is given

by

S :[ + (.fun - .f;:/f )”/
R dh
2 dy

where I is the identity matrix, h(x,2)=0 represents the switching condition, » is the vector normal to the switching
surface and n” is its transpose, f,z represents the right hand side of the differential equation before switching
occurred and f,, represents the right side of the differential equation after switching. From this the saltation matrix is
calculated after each switching event. Since we are interested in the stability of the periodic orbit exhibited by the
drive, we need to calculate the state transition matrix over the whole cycle. This matrix is called monodromy matrix.
If the switch is ON at time 0 till time d7 (where d is the duty cycle and T is the period) and the switch remain OFF
from dT till time T, then the monodromy matrix is expressed as

Doretoe (1,0) =S, X (1",dT) XS, Xg,

on

(dT,0)
where S, is the saltation matrix related to first switching and S, is that related to the second switching. If the moduli
of all the eigen values of the monodromy matrix, called Floquet multiplier, are less than unity, then the system will

be stable.

For the drive under consideration
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x(1)oy and x(2).5 represents the values of state variables (current and speed ) at the instant of switch on.

—_ 1dT = 1(1-d)1
¢,m —=e s ¢U// =e

, W -V, dh
" - " i N 7 u 4 —
h(x,t) =G[x(2)- v, ]1-V, — 0 ax(l) 0l dn -
= = &% = :
dh G| dt T
dx(2)
4 GV

. . — . . —- K, x(1 - Bx(2 -1
fzm - -/u// = La & (-fun - -fnf/ )”T = 0 La nj Af;,//‘ :G X ’\( )‘W \( )“// )

0 0 0 J

Consequently, the saltation matrix for the DC drive at the switching instant (1-d) T is given by

GV
1 La
§= (;[ K,x(1) = BX(2),y - T,| ¥, -V,
J r
0 1

For the given set of parameter and input voltage 100V, we obtain d= 0.4706 and

0.3298 - 0.01116
0.3488 0.9932

I - 4.4283 - 0.4574 -1.6573
0 1 - 0.0498 - 04521

switching from the ON state to the OFF state at the end of the clock cycle turns out to be identity matrix as the
falling edge of the ramp causes the dh/dt term to be infinity.

on off

_[0.3734 - 0.0108
103264 09942

The second saltation matrix S, is related the
S, =

The values of x (1) .5 and x (2) o can be found out by solving state equations (3). The duty cycle, d, is found out by
solving the equation & (x,8)=0.
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The eigen values of the monodromy matrix were found to be -0.7420 and -0.1675. This is expected from the
bifurcation diagram (Fig. 4). All eigen values are less than unity. Hence the period-1 orbit is stable.

For some values of the supply voltage & (55,120) and gain, & (0.1, 0.4) the Floquet multipliers were computed
and the results are shown in Table 1 and Table 2. The corresponding loci are shown in Fig. 14 & 15. A bifurcation
is described by crossing of multiplier from the interior of the unit circle to the exterior.

Table 1:
Voltage | Floquet multipliers Remark
55 0.2910 =+3j0.0.19901 Period-1 stable
100 -0.7432,-0.1672 Period-1 stable
116 -0.9209,-0.1349 Period-1 stable
120 -1.0661,-0.1165 Period -2
Table 2:
Gain Floquet multipliers Remark
0.1 0.0898 —+j0.3409 Period-1 stable
0.2 0.2542 —=+j0.2442 Period-1 stable
0.32 -0.8710,-0.1427 Period-1 stable
0.38 -0.1130,-1.0992 Period -2
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Fig. 14: Loci of Floquet multipliers for V& (55,120)
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Fig.15: Loci of Floquet multipliers for gain & (0.1,0.4)

5. Conclusion

In this paper occurrence of chaos has been demonstrated by MATLAB simulation. The bifurcation diagram drawn
gives the behavior of the system at different parameters. The calculation maximum Lyapunov exponent quantifies
the occurrence of chaos. The stability analysis with the help of monodromy matrix and its eigen values gives the
stability properties of the drive. The stability of period-1 can be greatly influenced by appropriate manipulation of
the saltation matrix of the system. Based on the observation, we are able to design a controller capable of extending
the parameter range for stable period-1 operation. This information is very important for the designer to design the
drive system.
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