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Abstract. Musculoskeletal disorders are one of the leading causes of disability. Currently, 1.3
billion population across the globe are suffering from various musculoskeletal disorders (MSK)
and it imposes a total of § 136.8 billion annual burden to the US economy. Current treatment
options consist of pain medication and surgical intervention by inserting implants and scaffolds
on the affected site. Hydroxyapatite [HA, Ca10(PO4)sOH2] based implants are widely preferred
for tissue engineering applications due to their compositional similarities with human bone.
However, post-surgical infections on the implant surface often cause implant failure and need to
be rectified by three times costlier revision surgery. The flexible crystal chemistry of
hydroxyapatite allows transition metal substitution both in the cationic and anionic sites due to
the ionic radius differences between calcium and first row transition metals. Transition metal
substitutions incorporate exiting biological and antibacterial properties to HA. This paper will
summarize the available literature reports which describe the crystal chemistry of first row
transition metal incorporation in HA and the resulting antibacterial properties.
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1. Introduction and historical background

1944! It was the story of devastated Europe during world war two. A Jew young man was
able to escape from the holocaust and took refuge in Institute of soil research to continue the
studies of Apatite minerals which he had started in Scandanavia [1-3]. Figure lis a tribute to that
young man, named Victor Goldschmidt, who is known as the father of modern geochemistry.
Apatites (A10(MO4)6X2) are a diverse family of materials which have attracted wide attention
in the scientific community due to their broad application as pigments, catalyst, energy materials,
materials for the remediation of hazardous waste and as a bio-ceramics [4-8]. The general
chemical formula of apatite is A10(PO4)6X2 where the A cation can be an alkaline earth metal
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Sr, Ca or Ba and the X anion can be OH" ion or CI ion, which represents hydroxyapatite, and
chlorapatite, respectively. V. Goldschmidt was the first one in history who explained apatite
structures by thorough study of deposits in Scandinavia. That time apatite structure was
represented by the general notation [Ca4][Ca6][(PO4)6][F]2, which represents that it is formed
CaO6 units and those are joined together with PO4 networks which make a structure similar to
that of a hexagonal honeycomb extending in the ¢ direction [9-11].

Why could bone take up fluorine selectively even from dilute solutions? This was one of the
most wondering questions to scientists of that era. A careful examination of apatite structure
gave a satisfactory answer to this question and the following conclusion was reached based on
the observations and experimental results. (1) apatite structure is a channel structure with
partitions having corner-connected CaOs and PO4 polyhedra; (2) bond-length criteria are fulfilled
with filling of these channels by Ca and anions (OH-, F°); and (3) change in channel length
happens with variation of ionic radii. Keeping these factors in consideration, better stability of
Fluroapatite can be explained by the best fit of fluorine atom in apatite structure which is the
basic science behind the treatment of dental cavities by altering fluorine content [12,13].

Apatite deposits in
Scandanavia

Fig. 1: History of research on apatite crystal chemistry
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Calcium hydroxyapatite [HA, Caio(PO4)sOH:], an important member of the apatite family is
a suitable ceramic for orthopedic, dental, and maxillofacial repair [14-16] due to its hexagonal
structure and Ca/P ratio of 1.67, that identical to bone apatite. To tailor the crystal chemistry of
HA for specific applications (bioceramic, catalyst, pigments etc.), doping with several transition
metals are a unique option [17,18]. Doping of HA by metals like Ag, Cu and Zn also improves
its biological properties. However, to understand the doping mechanism of cations in HA
structure and its effect on chemical and biological properties, it is very important to demonstrate
the effect of processing techniques via solid state route, wet chemical routes and heat treatment
cycleon doping mechanism [19-20].

2. The open debate about transition metal doping site in hydroxyapatite

Several contradictory reports are presented in literature regarding doping site of transition
metals in HA structure. It can be concluded from the available literature that when sintering
temperature is above 900 °C, Zn™ ions not simply substitute the Ca site of HA instead they
reside in the OH hexagonal channel [21]. Similar phenomena have been observed in case of Cu
after heat treatment and quenching from 1100 °C [22]. But now the question comes, why is this
happening? Is it possible to incorporate transition metals in OH channel instead of Ca site? A
detailed investigation about at ionic radii parameters of concerned ions indicate that there is a
large difference of ionic radii value (~25%) between Ca?* and transition metal cations as listed in
table 1. This is the primary reason why transition metals are not always substitutes in the cationic
site of HA [23].

Element Coordination no. Tonic radius (A)
Ca™? 8 (octaheadral) 1.00
Mn"? 8 (octaheadral) 0.67
Co “ 8 (octaheadral) 0.65
Ni'“ 8 (octaheadral) 0.69
Cu™? 8 (octaheadral) 0.73
Zn 8 (octaheadral) 0.74

Table 1: Ionic radius comparison of Ca*? and first row transition metals
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Correlation of heat treatment parameters with Rietveld refinement data of doped samples
revealed that below a temperature of 700 °C, Zn*? incorporation happens in b-TCP structure of
the biphasic calcium phosphate which leads to unit cell volume contraction. When the sintering
temperature is above 900 °C, then b-TCP becomes unstable and Zn*? incorporation happens in
the interstitial 2b wyckoff position instead of the Ca site which leads to unit cell volume
expansion of doped hydroxyapatite [24]. A similar observation has been found for Cu*? when the
sintering temperature reaches above 1100 °C [25]. However, Cu*? show a tendency of reduction
to Cu'! when heated at that temperature. No such observation (tendency of reduction) had been
found in case of Zn™. Figures 2 represents the crystal structure of pure HA with different
crystallographic sites.

3. Effects of Copper doping in HA

3.1 Effect on HA crystal chemistry

As discussed in the earlier sections, Cu can go both in Ca site of HA structure as well as
in OH channel depending on the preparation techniques. According to the available literature, if
copper doping in HA is performed in solid state reaction route followed by quenching from 1100
°C, Cu goes in OH channels retaining the hexagonal crystal structure with space group P63/m
[21]. Logically it can be concluded from table 1, due to the smaller size of Cu*? (~0.73 A) in
comparison to Ca*? (~1.00 A), unit cell volume reduction will happen for substitution of Cu*? in
Ca*? position of HA structure. However, opposite observation was found after heat treatment and
quenching from 1100 °C (it leads to incorporation of Cu in OH channel of HA instead Ca site).
substitution in OH

Fig. 2: Crystal structure model of HA [26]
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channel. A previous work reports the Xray absorption spectroscopy (XAS) result of Cu doped
HA containing Cu in OH channels. It is previously reported that heat treatment over 1100 °C
leads to reduction of Cu*? to Cu™! (peak around 8990 e¢V) [21]. Due to the mixed oxidation states
of Cu in HA, it results in O-Cu-O chromophore with bright pink color [27]. The presence of
these chromophores makes Cu doped HA, a potential candidate for use as an inert non-toxic
pigment that is stable even at high temperatures.

3.2 Effects on biological properties of HA

Due to its involvement in several metabolic processes, Cu is an essential micronutrient of
several living organisms. However, due to its ability to form reactive oxygen species, the
cytotoxicity limit of Cu is an important factor that needs serious attention [28]. The antimicrobial
properties of copper were known since ancient times and examples can be found in ancient
Indian literatures where uses of Cu as drinking water sterilizing metal has been reported [29.30].
Figure 3 represents various uses of Cu in different parts of India.

Fig. 3: Uses of Cu in different parts of India

There are various competing theories to explain the antibacterial mechanism of Cu.
Although no theory can explain it with perfection [30]. The most accepted theory is that Cu
causes reduction potential change of bacterial cell membrane followed by its penetration inside
the cell. Cu has the ability to forms reactive oxygen species as well as it can bond with the thiol,
amine and carboxyl groups present inside the cell. Combinations of these two effects cause cell
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membrane dysfunction which is the major cause of cell death. Several researchers also
demonstrated that Cu forms bond with the DNA of bacterial cell causing DNA damage and leads
to cell death [31,32]. Variable oxidation states of Cu are also an important factor to determine its
antimicrobial efficiency. It has been reported that Cu*! is more toxic to bacteria than Cu*? [21].
A previous work also reports that due to leaching of Cu from HA structure (~0.082 ppm to 0.73
ppm in PBS solution for a doping level of 1 wt. % and 10 wt. % respectively), Cu doped HA
shows zone of inhibition ranging from 0.2 cm to 0.5 cm [33]. However, most antimicrobial
studies of Cu doped HA were performed after substituting Cu in Ca site of HA and confirming
Cu™? oxidation state. One recent study concludes that Cu can also show antibacterial property
after getting incorporated inside the hydroxyl channels.

4. Effects of Zinc doping in HA
4.1 Effect on HA crystal chemistry

Available literature on Zn doped HA suggests that without any heat treatment operation
in wet chemical route, Zn"? is incorporated in Ca site of HA [24]. However, heat treatment at
1100 °C results incorporation of Zn™ in the hexagonal channel of HA structure at the 2b
Wyckoff site and forms O—Zn—O bonding [22], which results to a solid solution of the formula
Ca10Znx(PO4)6(OH)2-2x02x. Incorporation of Zn*? in OH channel happens due to the more stable
HA phase at 1100 °C thanb-TCP. Insertion of Zn*? is similar to that of Cu*? but Zn™ does not
show any change of oxidation states as shown for Cu.

4.2. Effect of Zn doping on Biological properties of HA

It also been proved that Zn*? shows antimicrobial properties against a wide range of
bacteria (S. aureus, E. coli, S. epidermidis) and other microorganisms (c. albican). Most studies
of Zn doped HA have been performed after substituting Zn in Ca site of HA structure [34].
Nowdays it is of utmost importance to understand the effect of Zn substitution site on the
antibacterial efficiency of Zn doped HA. One recent work report that Zn substitution in the OH
channels does not show any antibacterial effects against E. coli and S. aureus due to restricted Zn
leaching by the formation of O-Zn-O bonding. Figure 4 represents the antibacterial mechanism
of Zn doped hydroxyapatite after substitution in different doping sites.

5. Summary and future trends

This paper summarizes that, (1) The substitution site of Cu and Zn in HA structure can be altered
by altering the processing parameters (heat treatment cycle, doping composition in solid state
and wet chemical processing route etc.). For doping Cu in HA by solid state route, there is a
confirmation that Cu goes into the HA channel after heat treatment. (2) Most of the antibacterial
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Cu doped HA are prepared by wet chemical route confirming the substitution of Cu in Ca site of
HA. Antibacterial efficiency of Cu substituted HA [Cu in OH channel of HA] prepared by wet
chemical route also demonstrates antibacterial efficacy. In contrast, the Zn doped HA shows
antibacterial efficacy only when Zn replaces the Ca site of the HA. (3) Zn can be doped in HA by
wet chemical route and there is evidence to confirm that incorporation of Zn in OH channel of
HA structure happens heat treatment at 1100 °C, but this substitution leads to restricted Zn
leaching and no antibacterial efficacy due to the formation of O-Zn-O binding. Future works in
this field can be directed to (a) to test the cytotoxicity of Cu and Zn doped HA with human
osteoblast cells for monitoring the maximum safety doping limit of Cu and Zn in HA (b) to find
out which method of synthesis (between solid state and wet chemical) is better for production of
less toxic Cu and Zn doped HA (c) to characterize the potential of prepared materials for using as
a bone implant by in vivo testing in mouse models (d) based on the results of in vivo testing,
patient specific scaffold can be prepared by the doped HA powder, using 3D printing technique
(e) after analyzing 3D printing results carefully, obtained scaffolds can be utilized for low load
bearing defect repair such as spinal fusion.

Restricted bacterial killing after thermal treatment and Zn substitution in OH channel
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Fig.4. Enhanced bacterial killing after Zn substitution in Ca site of HA
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Schematic representing enhanced bacterial killing after Zn incorporation in Ca site of HA,
whereas, Zn substitution in the OH channels leads to no bacterial killing due to restricted Zn
leaching by the formation of O-Zn-O bonding [22].
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Classical Trajectories in Rindler Space
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Abstract: The nature of single particle classical phase space trajectories in Rindler
space with non-hermitian P7T-symmetric Hamiltonian have been studied both in
the relativistic as well as in the non-relativistic scenarios. It has been shown that in
the relativistic scenario, both positional coordinates and the corresponding canon-
ical momenta are real in nature and diverges with time. Whereas the phase space
trajectories are a set of hyperbolas in Rindler space. On the other hand in the non-
relativistic approximation the spatial coordinates are complex in nature, whereas
the corresponding canonical momenta of the particle are purely imaginary. In this
case the phase space trajectories are quite simple in nature. But the spatial coor-
dinates are restricted in the negative region only.

Keywords: Rindler space; Uniformly accelerated frame; Classical trajectory;
Poisson’s equation

1. Introduction

Exactly like the Lorentz transformations of space time coordinates in the in-
ertial frame [1,2], the Rindler coordinate transformations are for the uniformly
accelerated frame of reference with respect to some inertial one [3-9]. From the
references [3-9], it can very easily be shown that the Rindler coordinate transfor-

mations are given by
2 '
ct = (C —i—z/) sinh (at> and
a c

e (2 ) (). o

Hence it is a matter of simple algebra to prove that the inverse transformations
are given by

2 2
ct':c—ln(xi_zt) and m':(zz—(ct)2)1/2—%. (2)

Here « indicates the uniform acceleration of the frame. Hence it can very easily
be shown from Egs. (1) and (2) that the square of the four-line element changes
from

ds? = d(ct)2 —dz® — dy® — d2* to

N 2
ds® = (1 + 02_22:> d(ct')2 —dz'? - dylz - dzI27 3)
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where the former line element is in the Minkowski space.
Hence the metric in the Rindler space can be written as

2
g"" = diag <(1 + %) ,—1, —1,—1> , (4)
whereas in the Minkowski space-time we have the usual form
g‘“’ = dla'g(+15 _17 _15 _1) (5)

It is therefore quite obvious that the Rindler space is also flat. The only differ-
ence from the Minkowski space is that the frame of the observer is moving with
uniform acceleration. It has been noticed from the literature survey, that the prin-
ciple of equivalence plays an important role in obtaining the Rindler coordinates
in the uniformly accelerated frame of reference. According to this principle, an
accelerated frame in absence of gravity is equivalent to a frame at rest in presence
of a gravity. Therefore in the present scenario, a may be treated to be the strength
of constant gravitational field for a frame at rest.

Now from the relativistic dynamics of special theory of relativity [1], the action

integral is given by
b b
S = —agc/ dsE/ Ldt, (6)
a a

where ap = —mgc [1] and mg is the rest mass of the particle and c is the speed of
light in vacuum.
The Lagrangian of the particle may be written as

9 az\2  v2]Y?

where v is the three velocity vector. Hence the three momentum of the particle is
given by

0L

P= Ea

or (8)

moVv
1/2°
[(1+28)" - 5]

Then from the definition, the Hamiltonian of the particle may be written as

(9)

P=

H=pv-L or (10)

) oz p2 1/2
H = moc (1+C—2) 14 . (11)

2.2
mqC

Hence it can very easily be shown that in the non-relativistic approximation,
the Hamiltonian is given by

2
— ar p 2
H—<1+C2><2m0+moc>. (11a)



In the classical level, the quantities H, z and p are treated as dynamical vari-
ables. Further, it can very easily be verified that in the quantum mechanical sce-
nario where these quantities are considered to be operators, the Hamiltonian H is
not hermitian. However the energy eigen spectrum for the Schrédinger equation
has been observed to be real [10]. This is found to be solely because of the fact that
H is PT-invariant. Now it is well know that PzP~! = —z, PpP~! = —p, whereas
TpT ! = —p and PaP~! = —a but TaT ! = a. Therefore, it is a matter of simple
algebra to show that PT H (PT)~' = HPT = H. As has been shown by several
authors [11] that if H is PT-invariant, then the energy eigen values will be real.
Here P and T are respectively the parity and the time reversal operators. Further
if the Hamiltonian is PT symmetric, then H and PT should have common eigen
states. In [10] we have noticed that the solution of the Schrédinger equation is ob-
tained in terms of the variable u = 1 + ax/c?, which is PT-symmetric. Hence any
function, e.g., Whittaker function M, ,(u) or Associated Laguerre function L, (u),
the solution of the Schrodinger equation are PT-symmetric. These polynomials are
also the eigen functions of the operator PT.

Of course with the replacement of hermiticity of the Hamiltonian with the PT-
symmetry, we have not discarded the important quantum mechanical key features
of the system described by this Hamiltonian and also kept the canonical quantiza-
tion rule invariant, i.e., T9T~' = —i. This point was also discussed in an elaborate
manner in reference [11] and in some of the references cited there.

In this article we have investigated the time evolution for both the space and the
momentum coordinates of the particle moving in Rindler space. We have consid-
ered both the relativistic and the non-relativistic form of the Rindler Hamiltonian
(Egs. (11) and (11a) respectively). Hence we shall also obtain the classical phase
space trajectories for the particle in the Rindler space. We have noticed that in
the relativistic scenario, both the spatial and the momentum coordinates are real
in nature and diverge as ¢t — oo. For both the variables the time dependencies are
extremely simple. Hence we have obtained classical trajectories p(z) by eliminating
the time dependent part.

However, in the non-relativistic approximation, the spatial coordinates are
quite complex in nature, whereas the momentum coordinates are purely imaginary.
Since the mathematical form of the phase space trajectories are quite complicated,
we have obtained p(z) numerically in the non-relativistic scenario.

In the first part of this article, we have considered the relativistic picture and
obtained the phase space trajectories, whereas in the second part, the classical
phase space structure is obtained for non-relativistic case. To the best of our
knowledge such studies have not been done before.

2. Relativistic Picture
The classical Hamilton’s equation of motion for the particle is given by [12]
¢ =[H,alps and p=[H,plpz (12)
where [H, f]p,= is the Poisson bracket and is defined by [12]

_0f09 _09f9yg
[f, g]p,z = dp dx Oz dp’ (13)

Rindler space
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Fig. 1 Phase space trajectories for the relativistic scenario with the scaling parameters equal
to unity

In this case f = z or p. In Eq. (12) the dots indicate the derivative with respect
to time. Now using the relativistic version of Rindler Hamiltonian from Eq. (11),
the explicit form of the equations of motion are given by

2
p— ary = pe .22 2 4\1/2
m_(1+02>(p202+mgc4)1/2 and p= C(pc + mge . (14)

The parametric form of expressions for z and p represent the time evolution
of spatial coordinate and the corresponding canonical momentum. The analyti-
cal expressions for time evolution for both the quantities can be obtained after
integrating these coupled equations and are given by

2
z = CE[CO cosh(wt —¢) —1] and p = —moc sinh(wt — ¢), (15)

where Cp and ¢ are the integration constants, which are real in nature and w = a/c
is the frequency defined for some kind of quanta in [10]. Hence eliminating the time
coordinate, we can write

az\? 1 p?
(1 + 0—2) =L (16)

This is the mathematical form of the set of classical trajectories of the particle
in the phase space. Or in other wards, these set of hyperbolas are the classical tra-
jectories of the particle in the Rindler space. This is consistent with the hyperbolic
motion of the particle in a uniformly accelerated frame. These set of hyperbolic
equations can also be written as

2202 (20 oW
p° = mgc (02 )(1—|— 26). (17)

It is quite obvious from the parametric form of the variation of z and p with
time that both the quantities are unbound. This is also reflected from the nature
of phase space trajectories as shown in Fig. 1 for the scaled z and p. The scaling



factors are a/c? for z and (moc)~! for p. For the sake of illustration, we have
chosen the arbitrary constant Co = 1.

In this figure we have also taken both the scaling factors identically equal to
unity. Then obviously Eq. (16) reduces to

(z+1)2—p2:1.

We shall get the other set of trajectories by choosing different values for the
scaling factors. It is obvious that in this case the centre of the hyperbola is at
(—1,0). Therefore with the increase of o, the centre — (0, 0). Further the vertices
for this particular hyperbolic curve are at (0,0) and (—2,0). The second one is in
scaled form. Therefore for the gravitational field a large enough, both the vertices
coincide at the centre (0,0). It is also obvious that for very large values of «, these
two curves touch each other at (0,0). We have therefore noticed that the phase
space trajectories are unbound and consistent with the motion of the particle in
Rindler space.

3. Non-Relativistic Picture

We next consider the non-relativistic form of Rindler Hamiltonian given by Eq.
(11a). Now following Eq. (12), the equations of motion for the particle in Rindler
space in the non-relativistic approximation are given by

2
P = TN P = 2 (P 2
T = (1+ c2) . and p =2 <2m0 -+ moc > . (18)
On integrating the second one we have
1/2
p— 2 moccot (“%J”P) — ipy. (19)

The particle momentum is therefore purely imaginary in nature with its real
part pr = 0. Here ¢ is a real constant phase. Next evaluating the first integral
analytically, we have

oo e [ s (2= )))]
+ 15 [sin {m (sin2 (21/2“’#»” =zp + iz (20)

The spatial part is therefore complex in nature, where the real part

cum £ 1 on (st (222=0)) )] -

and the corresponding imaginary part is given by

xr = 5 [sin {m <sin2 <2l/2“+_¢>> }] . (22)

Rindler space
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Here again eliminating the time part, we have the mathematical form of phase
space trajectories for the imaginary parts only

[1— exp {sin~" (22/)}]"/
exp { % sin—! (%x;) }

which gives the phase space trajectories of the particle in the Rindler space in
non-relativistic scenario. It should be noted here that since the real part of the
particle momentum is zero, we have considered the imaginary parts only. Since py
is real, therefore | wzy/c|< 1, i.e., can not have all possible values.

In Fig. 2 we have plotted the scaled zg, i.e. (wrg/c) with scaled time (wt/21/2)
for ¢ = 0. Since the constant phase ¢ is completely arbitrary, for the sake of
illustration we have chosen it to be zero. In this diagram the scaling factors are
also taken to be unity. Now if we consider variation of the scaling factors, the
qualitative nature of the graphs will not change but there will be quantitative
changes.

In Fig. 3 we have plotted the scaled zy, i.e., (wzy/c) with scaled time (wt/21/2)
for ¢ = 0. In this case also same type of changes as has been mentioned for zg
will be observed.

In Fig. 4 we have plotted the scaled py, which is actually (p1/21/ 2moc) with
scaled time (wt/ 21/ 2) for ¢ = 0. In this case also the scaling factors are exactly

pr =2"%moc , (23)
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Fig. 5 Phase space trajectories for the non-relativistic scenario with the scaling parameters
equal to unity
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Fig. 6 Temporal variation of z; in physically acceptable domain

equal to one. Further the same kind of variation as mentioned above will be ob-
served for p;y with the change of scaling parameters.

Finally in Fig. 5 the phase space trajectory for scaled z; and scaled py is shown
Since the physically accepted domain for scaled z; is from —1 to 0, we have shown
in Figs. 6 and 7 the plot of scaled z; and scaled p; with scaled time.
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Fig. 7 Temporal variation of p; in physically acceptable domain

4. Conclusion

Finally in conclusion we would like to mention that to the best of our knowledge
this is the first time the phase space trajectories are obtained in Rindler space using
non-hermitian PT-symmetric Hamiltonian.

In the relativistic case the trajectories can be represented by a set of hyperbo-
las. Whereas in the non-relativistic picture, particle momenta are purely imaginary
and the space coordinates are complex in nature. The variation of real and imagi-
nary parts of space coordinates are quite complicated. Further, the phase space is
restricted within the domain of negative z-values. The imaginary part of particle
momentum has been observed to change with time in a discrete manner in this
region.

If we consider the Rindler Hamiltonian in the form

2
_ ary P

H_(1+ 02)2m (24)
then it is a matter of simple algebra to show that

2me

1+ w—: =texp(2m) and p = (25)

wt

Hence redefining 1+wz/c as new z and 2me/(wp) exp(2m) as new 1/p, we have
zp = 1, which gives the phase space trajectories in Rindler space. The trajectories
are rectangular hyperbola.
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Modified Newtonian Gravity: Explaining observations of sub-
and super-Chandrasekhar limiting mass white dwarfs

Agrim Sharma! and Banibrata Mukhopadhyay?
Department of Physics, Indian Institute of Science, Bangalore 560012, India

Abstract: The idea of possible modification to gravity theory, whether it is in the
Newtonian or general relativistic premises, is there for quite sometime. Based on
it, astrophysical and cosmological problems are targeted to solve. But none of the
Newtonian theories of modification has been performed from the first principle.
Here, we modify Poisson’s equation and propose two possible ways to modify the
law gravitation which, however, reduces to Newton’s law far away from the center
of source. Based on these modified Newton’s laws, we attempt to solve problems
lying with white dwarfs. There are observational evidences for possible violation
of the Chandrasekhar mass-limit significantly: it could be sub- as well as super-
Chandrasekhar. We show that modified Newton’s law, either by modifying LHS
or RHS of Poisson’s equation, can explain them.

Keywords: Newton’s law; modified Poisson’s equation; Chandrasekhar-limit;
white dwarf

1. Introduction

Over the years, the researchers have explored the modifications to Einstein’s
gravity in order to explain astrophysical and cosmological data. However, any such
modification proposed for the compact objects should be asymptotically flat. It
should follow the reduction from modified Einstein’s to Einstein’s gravities and
then to Newtonian gravity with distance from the source. Therefore, a modified
Einstein’s gravity may reduce to modified Newtonian gravity at some length scale.

In the present paper, we explore the possible modification to Poisson’s equation
to understand the possible modification to Newtonian gravity. Based on that, we
target to resolve an astrophysical problem.

A white dwarf is a stellar core remnant composed mostly of electron-degenerate
matter. The Chandrasekhar-limit is a theoretical limit for the maximum mass of
a stable nonrotating and nonmagnetized white dwarf. If the mass of a white dwarf
exceeds this limit, the force due to gravity becomes greater than that due to
the electron degeneracy pressure. This leads to the star collapsing under its own
gravity, leading to heating up of the plasma, which can result in a supernova. This
is what happens in a type Ia supernova (SNIa).

A typical, slowly rotating, carbon-oxygen white dwarf accreting mass from
a companion star explodes at a critical mass ~ 1.4Mg. Due to this, all type
Ia supernovae (SNela) have a characteristic light curve, that is luminosity as a
function of time. This makes SNela a “standard candle”, which can be used to
study the universe in various ways. Notably, observations of SNela led to the
conclusion that the universe is undergoing an accelerated expansion.
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2 E-mail: bm@iisc.ac.in
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However, there are observations of highly over-luminous SNela, e.g., SN 2003fg,
SN 2006gz, SN 2007if, SN 2009dc [1,2] with progenitor masses believed to be as
high as 2.8Mg and highly under-luminous SNela, e.g., SN 1991bg, SN 1997cn,
SN 1998de, SN 1999by, SN 2005bl with inferred progenitor masses being as low as
0.5 Mo [3-5].

As a possible explanation of these anomalous SNela, Mukhopadhyay and his
collaborators had earlier explored modifications to general relativistic gravity mod-
els and the resulting change in the Chandrasekhar mass-limit [6,7].

This work explores similar modifications to Newton’s model of gravity to see
if modifications to corresponding classical quantities also produce similar results.

2. The Modification to Newtonian gravity

The aim here is to have a formula that is able to reproduce Newtonian results
in the weak field limit and mimic general relativistic results in the strong field
limit. The original Poisson’s equation for Newtonian gravitational potential ¢(r)
for a density distribution p(r) is

V3¢ = 4npG. (1)

The following are two general types of modifications that are considered in this
work:
V2¢ + AV¢ = drpG (2)

V%3¢ = 4nG(p + Bp* + ...). (3)

3. LHS modification: general solution to the equation
The modified formula can be provided as
V2¢ 4+ AV* ¢ = 4mpG. (4)

Using Green’s method, with the constraint that ¢ € R, we get the following
expressions:

| ’r_ 1/|
3. cos (_A_) 7
a’r . /dsr" S 4nGp(r") , (5)
4r|r — 1’| 4r|r’ — 1| A

For A >0: ¢(r) = /

_ |r/_rll|
d3r’ /dSr”eXP( V14| ) A Gp(r")

For A <0¢(I‘) = / m 47r|r’ — r”| |A‘ . (6)

We have provided detailed explanation in Appendix A.
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8.1 Calculation of the mass limit
Coming to the ideal white dwarf model which satisfies the equations:

P=Kp'tn, (7)
dfi\fr = drr?p, (8)
VTP = -V¢, 9)
— L2 P = v=—s0) (10)

where P is the pressure of white dwarf matter, p the density, M, the mass enclosed
in the radius r, n the polytropic index and K the polytropic constant.
Let 6 be a dimensionless function of r so that

p(r) = p = pcb", (11)

where p. being the density at the centre of the white dwarf.
Similarly, considering dimensionless variable £ such that

r = a, (12)

we obtain

_1.d (r2dP\ _ (14+n)Kpe/™ 1 d (,»d0
0=y (5a) - e (€)W

From the modified equation for gravity given by Eq. (4):

1d (2df\ _ n

f(r)+AT2 ar (r dr) = g(r) = 4npH"G, (14)
2do d20) A <4d30 d*o a?4nG n
teeTe) T2\ tag) = =7 (15)
(édf 3 a? \£de®  d¢ (14+n)Kp,™

1-n
If we let a2 = %i, then we obtain
2d9  d%0 A (4d%0 d*0 n
(Gz+ie)ra(tas )= (16)

Notice that when A = 0, the above equation reduces to the Lane-Emden equa-
tion as expected.

For n = 3 (i.e. the relativistic case), we will numerically find the solution of
0(¢), which will give us the mass-limit of a white dwarf as a function of A/a? based
on

R &1
M= / 47ﬂ"2pdr = 47ra3pc/ £20™de. (17)
0 0

Modified Newtonian gravity
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3.2 Numerical solution of p(r) for white dwarfs

Having added a new parameter to the Lane-Emden equations, we will need
some extra information than what is usually needed to find numerical solutions in
the Newtonian gravity. Fig. 1 shows the variation of My;,,/M¢p, with My;,, being
new mass-limit and Mgy, being original Chandrasekhar-limit, as a function of a? /A
for different values of the extra unknown constraint 6”(0) shown as labels.

Since ‘a’ depends on p. and n, we can obtain different values of Chandrasekhar-
limit for different p. and even subtly different n, both of which are physical pa-
rameters. Hence given a fixed value of the modification parameter A which we
naturally expect to be a universal constant, there can be conditions where the
Chandrasekhar mass-limit differs depending on conditions inside the white dwarf.

Fig. 1 Variation of My, /Mcp, with a?/A for different 6”(0) shown as labels.

3.3 Analytical limits of My /Mcn as A — 0 and A — oo
The modified Lane-Emden equation is

2d0 = d?%6 A (443 d% n

23
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Analytical limits can give us some verification of the correctness of numerical
solutions. For example, the results in Fig. 1 appear to be correct at least in the
a?/A > 0 regime.

3.8.1 Limit A — 0:
For A/a? << 1, assuming slight perturbation to the original Lane-Emden equa-
tion, the solution gives us:

293
Mym _ Jo €0%€ (A 21173\ .4
Mo, 201824~ \'T 22201824 (1 3a2>' (19)

Fig. 2 confirms that the solution passes A = 0 point smoothly with My;,,/M¢cp =
1, confirming the correctness of results around A = 0.

0.7
-0.1 -0.05 0 0.05 0.1

Fig. 2 Variation of My;,,/Mcp, with A/a? around A = 0.

3.8.2 Limit A — oo:
In this case the mass-limit depends on second derivative of 8(r) = [p(r)/p(0)]
(where p(0) = pc) at the centre of the white dwarf, and hence we obtain

12" -

1/n

My~ 15\ 67(0)
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3.4 Mass-radius relation
For the mass-radius relation, the density as a function of distance from center
is numerically computed® using the following equations:

err-

A2
- = 4nr-p, (21)
VTP - v (22)

Chandrasekhar’s exact equation of state is given by

P = Ki [0(22” = 3)V/a? +1+3sinh x|, (23)

p= Koz, (24)

where K1 = 8muemp (mec)®/3h3 and Ko = mmic®/3h3.
The modified gravity equation is:

V2¢+ AV3i¢ = 4mpG. (25)
Fig. 3 shows the variation radius of white dwarfs as a function of their mass.

M vs R plot LHS = Lapl(phi) + A'Laplz(phi)
0.025 T T T

0.005

0 L 1 L

0 0.5 1 1.5 2
M/M

Su

n

Fig. 3 Variation of radius with mass, where A is in units of m2. The central density varies
from p. = 108 to 1013kg/m3.

3 Using GNU Octave’s ’odel5s’ function - a variable step, variable order method based on
Backward Difference Formulas (BDF).
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4. RHS modification: general solution to the equation

The modified formula in this case is
V%3¢ = 4xG(p + Bp® + ...). (26)
Let peg = p+ Bp? + ...

We explicitly know the solution of the Poisson equation VZ¢ = peg(r) is

(r) = — / _pen(t) s 27)

4z|r — 1’|

Therefore, the form of gravitational potential will be exactly same as the usual
Newtonian gravitational potentials, but with peg instead of p.

4.1 Mass-radius relation

Using the same method as in Sec. 3, with the new modified gravity equation,
the variation of radius for white dwarfs as a function of their mass is generated
numerically?.

The modified equation considered is

V3¢ = 4nG(p + Ap?). (28)

One can observe in Fig. 4 that when peg > p, the mass is lower for a given
radius, as expected, and likewise for peg < p, the mass is higher than usual white
dwarf mass, obtained based on Newton’s law, for the same radius. Therefore, using
higher order polynomial terms, at different densities, the white dwarf can show
arbitrarily small or large masses in the range of p where the respective terms
dominate.

5. Conclusion

Newton’s law is a remarkably successful physics, well tested in laboratory,
also is remarkably successful in explaining low energy physics. Several astrophys-
ical features are also quite abide it. In this connection, the Chandrasekhar-limit
perhaps is one of the most celebrated astrophysical discoveries in the 20th cen-
tury, whose physical insight can be well understood in the Newtonian frame-
work itself. However, observations of several peculiar over- and under-luminous
SNela for about last three decades argue for the significant violation of the Chan-
drasekhar mass-limit. We have shown here that appropriate modifications to Pois-
son’s equation and, hence, Newton’s law can explain the significant violation of
the Chandrasekhar-limit, as inferred from observations. It argues that while the
existence of the Chandrasekhar-limit is sacrosanct, its value need not be. We ex-
pect the proposed modifications to Poisson’s equation and modified Newton’s law,
which reduces to Newton’s law asymptotically, to have far reaching implications.

4 Using GNU Octave’s ’odel5s’ function - a variable step, variable order method based on
Backward Difference Formulas (BDF).
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M vs R plot RHS = rho + A*rho?
10' T T T T

Sun
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R/R
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Fig. 4 Variation of radius with mass, where A is in units of m3 /kg. The central density varies
from p. = 108 to 1011 kg/m3.

Appendix A: General solution of the equation with modified LHS

The modified equation is given by

V2p+ AV = 4mpG. (29)

Let u(r) = VZ¢(r),
— [Av2 + 1] u(r) = 4mpG. (30)

From the solution of Screened Poisson Equation (derived using Green’s func-
tions)

(v 22 () = 1), 31)
—\/)\_2|r—r'|
— 3 7€ ’
For A <0, >\2:ﬁ’f:4_ﬁ;|LG’

Hence
) = V() = o) = [ L, (33)

4z|r — /|
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3./ €xp <_ |r\'/1”|) ”
d’r 31 [Al ) 4xGp(r")
= | e d 34
o(x) / R — / S e 4] (34)
Similarly, for A > 0, A2 = _%7 f= _4_7;{&,
u(r) eER = el = 1 (ej—ilr—l"l +eﬁ|r_r,l) = cos L|r —r'|).
2 VA
Therefore
I ’_ //l
d*c 3.1 COS( A ) AnGp(r’)
= d : 35
¢(r) / dnjr— 1| / drlr’ — 1| A (35)

References

1. D.A. Howell et al., Nature 443 (2006) 308.

2. R.A. Scalzo et al., ApJ 713 (2010) 1073.

3. A.V. Filippenko et al., AJ 104 (1992) 1543.

4. P.A. Mazzali et al., Mon. Not. R. Astron. Soc. 284 (1997) 151.
5. S. Gonzélez-Gaitén et al., ApJ 727 (2011) 107.

6. U. Das and B. Mukhopadhyay, JCAP 5 (2015) 045.

7. S. Kalita and B. Mukhopadhyay, JCAP 9 (2018) 007.

Modified Newtonian gravity



Vol. 2, No. 1,
Page 29-38 (2021)

[w, Publication

ISSN: 2395-5546 -' o ot

Coherent propagation dynamics of an adiabatic four-waveguide
directional coupler: a generic approach

- Ez . | SCIENTIFIC VOYAGE | A
Scientific Voyage | /1 -2 GCECT

Indranil Bayal®* and Pradipta Panchadhyayee'-®
2 Gopinathpur High School, Gopinathpur, Purba Medinipur, W.B., 72 1633, India

b Department of Physics, P. K. College, Contai, Purba Medinipur, W.B., 72 1401, India

Abstract. A generic model is presented to explore optical analogues of coherent population
transfer and trapping in a four-waveguide (WG) directional coupler. In contrast to conventional
counterintuitive order for the coupling coefficients, the present model highlights the robustness
of the approach irrespective of any particular coupling order with varying conditions of initial
light distribution. The coherent propagation characteristics shown by the WG coupler involve all
the adiabatic states instead of dark states only.

Keywords: Coherent population transfer and trapping, four-waveguide directional coupler, tripod
system, adiabatic states.

1. Introduction

During past few decades, some researchers have focused their attention to investigate the
probability of exploration of the microscopic quantum phenomena in optical regime. It provides
ample advantage of directly mapping the evolution of wave function in space by simple
fluorescence imaging or scanning tunneling optical microscopy. The field opto-quantum analogy
has become interesting day by day opening up a new avenue with the emergence of coherent
laser source and integrated fiber optics. The opto-quantum analogy have been extended to the
field of quantum optics to emulate many interesting phenomena like strongly driven two-level
system and Rabi oscillations, Electromagnetically Induced Transparency, Fano Interference,
Stabilization of Atoms in Ultra Strong Laser Fields, Stimulated Raman Adiabatic Passage
(STIRAP)linked with Coherent Population Trapping (CPT), quantum state embedded in a
continuum accompanied by Fano Resonance, quantum information processing and quantum
teleportation in photonic structures. WG based photonic structures are frequently used in this
quest since optical analogue of laser-matter interaction effects can be effortlessly produced by
simple engineering of the guiding structure [1,2]. The direct mapping and space visualization of
ultrafast time dependent phenomena is feasible using coupled WG and fiber structure. WG array
and directional coupler have been proven to be important optical tools for reproducing
microscopic quantum phenomena. WG array based photonic configurations are also employed to

! Corresponding Author: ppcontai@gmail.com
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investigate quantum phenomena like Coherent Population Transfer [3-6] and Trapping [7,8],
Fano Resonance [7], Rabi Oscillation [9] effects in broader scale.

In guided wave communication systems, optical WG directional couplers have promising
potential applications including power splitting, switching etc. [10-13]. In the simplest form,
directional couplers consist of two WGs which are installed sufficiently close so as to allow a
coupling between them. As a result, the interference between the two modal fields leads to the
periodical exchange of light energy between the two WGs during propagation [14]. Three or
more evanescently coupled WG systems have attracted great research interest towards
investigation of sophisticated and intriguing behavior in the field dynamics. The schemes for
using three-WG couplers have been introduced by Iwasaki et al. [15] and experimentally
demonstrated by Peall and Syms [16]. The extensive use of the directional coupler as a
switching/modulating device has been theoretically and experimentally shown in various
configurations and materials. The switching characteristics are analyzed in the three-WG system
by launching an incident beam into either the central WG [17] or an outer WG [18,19] or in both
[20,21]. The switching of light is feasible with the adiabatic evolution and the suitable design of
variable coupling coefficients [19] viz. introducing the counterintuitive order. The adiabatic
method is expedient as it needs no specific shape of coupling coefficient or definite system
parameters. However, to ensure the adiabatic evolution of normal modes, the coupling profiles
must allow sufficient overlapping over a significant spatial extent.

Fig. 1: Schematic presentation of a four-WG directional coupler.

Recently, an adiabatic three-WG coupler is presented in which the initial light is launched
in each of the WGs and any sequence of coupling profiles can be allowed to employ [22]. Apart
from switching and power splitting, WG directional couplers find applications as self-trapper
(complete return of light to the initial state) too [23]. Coherent Population Transfer and CPT in
multi-level atomic systems may be envisioned as the quantum analogues of switching, power
splitting and self-trapping effects in coupler systems. In most of the previous works on
directional couplers, the numbers of WGs were restricted to three only. In our present article, we
study the adiabatic light transfer mechanism (optical analogue of coherent population transfer
and trapping) in a four-WG directional coupler which assumes tripod like configuration in
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atomic regime. In almost all earlier works counterintuitive coupling schemes have been used
whereas our present study involves any order of coupling schemes and thereby making our
approach more general. Also the initial light distribution condition can be varied arbitrarily.

2. Theory and Results

Adiabatic four-WG coupler analogous to a four-level tripod system is presented in Fig.1. In our

configuration WG1, WG2 and WG3 are placed to make a small array and the rest WG4 is side
coupled with WG2. The coupling coefficients between: WG1 and WG2 is &, (z), WG2 and
WG3 is k,, (z) , WG2 and WG4 is £k, (z) whereas coupling between other pairs of WGs have

been ignored. We further assume that the propagation constants of all the WGs are equal. In

resonant condition, the tripod like four WG system is described by the Hamiltonian

0 k, 0 0
k, 0 ky k
H(Z)Zh 12 23 M 1)
0 ky; 0 0
0 k, 0 0

where coupling terms are real and satisfy the relation, kij = k;; Hamiltonian (represented by Eq.

(1)) has four eigen values (two of which are equal) given by 4, =4, =0, A, =—4, =hk(z) and

1
k(z)= (kf2 +k2, + k2, )/2. The corresponding adiabatic states can be expressed in terms of two z

k k
dependent mixing angles defined as tan $(z) = 2 (2) 7 and tan ¢(z) = Ky (2) )
() +Ki(2) ks (2)

The adiabatic states corresponding to two zero eigen values (dark states) are
¢ (z) =y, cos 9(z)—y,sin9(z)cosp(z) -y, sin I(z)singp(z) )
¢2(Z)=l//3Sin§D(2)—l,V4COS(p(Z). (3)

Two remaining adiabatic states are



Bayal & Panchadhyayee 32

¢ (z)= %[l//l sind(z)+y, +y; cos 3(z)cos(z)+y, cos I(z)sin (p(z)] 4
¢ (z)= %[l//l sing(z) -y, +y; cos I(z)cos p(z)+y, cos $(z)sin (o(z)] )

in this regard an interesting point to highlight is that our four WG system is capable of
generating double dark resonance. The amplitudes in the original and adiabatic bases are linked

through the relation ¢(z)=M (z)y(z) where the propagation matrix M (z)is orthogonal and

assumes the form

cos 9 0 —sin Ycos @ —sin 3sin @
0 0 sing —Cos @
M(Z)= LsinlSl 1 Lcos300sgz> Lcosl9sin(o (6)
2 2 2 2
Lsin&z _ L Lcos&‘cosgo Lcos.9sin(p
2 2 2 2

The evolution matrix U* (z f,z,.) in the adiabatic basis relates initial and final states such that

¢(z f) =U" (z 2 )¢(zl.) where z, and z represent the input and outputz coordinates

respectively. The evolution matrix in original basis reads as
U(zp2,)=M" (2, )U* (2,2, )M () (7

where

U (Z e zi) = . contains the phase factors in its diagonal elements.

0 0 0 &™

The different elements of the evolution matrix can be explicitly written as:
in, 1 . . in. 1 . . in,
U, =cosJ cosGe” +—sinJ, sinJ €™ +—sin Y, sin J e™
2 2

1. ; 1. .
U, = 5 sin g™ — 2 sin g e
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. a1 w1 i
U, =—cos Y, sinJ cospe™ +5s1n19f cosd cosp, e™ +Esml9f cos § cos @, e
. . i 1 . . i 1 . . i
U,, =—cosY,sin g sinpe™ +5s1n19f cos 9 sin @, e +Esm3f cos 4 sin g, e
1. ooom 1. o
U, =—=sin%e™ ——sin Je™
2 2
1 ., 1
U,=—e"+—=¢e™
2 2
1 in- 1 i7]
U23=Ecosl9icos¢ie 3—5005&005@6 “
1 . _ . in
U24=Ecosz9ism(pie . —Ecosgism(oie ‘
. a1 i 1 ;
U,, =—cos 9 sinJ, cosp e +551n19icosl9f cos g, e +551n19icos 4, cosgp, e™
U32=50053f cosg e —Ecosgfcosgofe ‘
U,; =sin, cos @, sinJ, cos ¢, €™ +sin g, sin ¢, ™ +5cos 8, cos ¢, cos I cos g, e™
1 .
+Ecos 4, cosp, cos I cos g, e™
U,, =sin 3, cos ¢, sin g sin g, ™ —sin ¢, cos ¢, €™ +§cosl9f cos @, cos Y sin g, ™
1 _ .
+ 2 cos 4, cos @, cos I, sin g, ™
| 1 .
_ . . i . . in. . . i
U, =-cosYsind, sinpe™ +Esmz9i cosd, sing, e +Esmz9i cosd, sing, e
1 . i 1 . in
=— e ——cos Y, sing, e
U, 2c053f31n¢f g 5 9, singp, ™

. | .
. ) : i . : "
U,; =sind cosg,sin g, singp, e™ —sinp,cosp, e™ +Ecosl9i cos ¢, cos I, sing, e™
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1 _ .
+ 5 cos g cosp,cosd,singp, e™
. o .
. . . . in in . . in
U, =sind sing, sing sing,e” +cosp,cosg,e™ +5c0s19f sing, cosJ sing, e™”

1 ;
. . .
+5COS 8, sing, cos g sing, e™

Let us assume z, = —ooand z =10

2.1 We now consider four distinct cases of coupling arrangements:

2.1.1 Case 1

The coupling coefficients are arranged in a manner such that &, (Z) originates before and

terminates after k, (Z)whereask24 (Z) is delayed with respect to both £,, (Z) and £k, (Z)

Following Asymptotic relations are applicable for the aforementioned coupling sequence:

4

3 (z = —oo) =94 (z = +oo) =g (Z = —oo) =0,9, (z = +oo) = %.Considering such arrangement
we take four different cases of initial light distributions.
@) If the initial amplitude is given by the matrix (1,0,0,0)", the final light amplitude will
be (&",0,0,0)" which is clearly a self-trapping case.
(ii) When the initial amplitude is(0,1,0,0)", final light amplitude will be
(0, % (e +e™),0, %(e"h —e™ )" . It is evident that initial light in the 24 WG will be

divided into the 2™ and 4" WGs and the amount of light energy present in these
WGs depends upon the phase factors 7;and 7, . In particular for 7, =7,, the light

will be completely trapped in the2™ WG (self-trapping case).
(iii)  Elementary light amplitude (0,0,1,0)" leads to the final amplitude given by

(O,%(e"“ —e ),0,%(5’% +€™ ). Thus initial light in the 3 WG will be shared into

the 2™ and 4™ WGs. In particular when, 7, =7,, the light will be completely

transferred from the 3™ WG to 4® WG. Thus it is obviously a case of light
switching.
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(iv)  If the initial light distribution is (0,0,0,1)", it leads to a final light distribution given
by (0,0,—€",0)" which is a case of power switching from the 4™ to the 3WG.
Thus our four WG coupler configuration is capable to exhibit power splitting, self-trapping

and switching phenomena under different initial light distribution conditions owing to some
specific system parameters.

2.1.2 Case 2

We may engineer the coupling coefficients in a manner in which k,, (z)precedes k,, (z)

and k,, (z)precedes k,, (z) Such sequence of coupling can be mathematically represented by
the following asymptotic relations:

1

9.(2:—oo)=0,l9f(z:+oo):

NN

(z=—0)=0,8,(z=+0)=

NN

@) Now if we envisage the elementary amplitude as (1,0,0,0)", the final light amplitude

will be (0,0,0,—™)". It is clearly a switching case in which light is absolutely
transferred from 1% to 4" WG.
(i) When the initial light sharing is given as (0,1,0,0)", ultimate light amplitude will be

represented by (O,%(ei”3 —e™ ),0,%(8”3 +e' ))T . It is evident that initial light in the

224 WG will be shared into the 2™ and4™ WGs and the phase factors 7,and 7,
regulates the light energy content in these WGs. Specifically, for 7, =7,, the light
will be completely shifted into the 4™ WG (switching case).

(i)  Final light amplitude will be (0,%(6"’3 +em ),0,%(8"3 —e™ )" for initial light

distribution (0,0,1,0)" . Thus initial light in the 3™ WG will be split into the 2" and
4" WGs. For 77, =1, the light will be completely transferred from the 3 WG to the
274 WG.

(iv)  If the initial light sharing is (0,0,0,1)", it directs to a final energy distribution
(0,0,—€™,0)" which is the case of power switching from the 4% to the 3"WG.

2.1.3 Case 3

As an alternative, we may fix up the coupling coefficients in a way in which £,, (z)

precedes ky(z) and ky (z)precedes k,(z). This physical condition may be represented in

terms of the following asymptotic relations:
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19i(z:—oo):0,19f(Z:+oo):%,@(z:—oo)zg,@(z:ﬂo):o.

>i) Under such order of coupling coefficients, if the initial amplitude is (1,0,0,0)", the
final light amplitude will be (0,0,—e™,0)". It is clearly a switching case in which
light is entirely transferred from the 1%t to the 3MWG.

(i)  Final light amplitude takes the form (%(e”h —e”’"),%(e"h +¢€"™),0,0)" for the initial

amplitude (0,1,0,0)". It is manifested that initial light in the 2™ WG will be split into
the 2™ and 1%t WG and the percentage of light in these WGs figures on the phase
factors 7, and 7,. Perfect trapping of light in the 2™ WG occurs particularly for

n, =1, (self-trapping case).
(iii)  For elemental light amplitude (0,0,1,0)", final amplitude will be (0,0,0,—e™)"

which indicates that there will be complete switching of light from the 3™ to the 4t
WG.

(iv)  When we employ the initial amplitude as (0,0,0,1)", final light amplitude assumes
the form (%(ei"3 +e™ ),%(e"”3 —e ),0, 0)". It is clear that initial light in the 4™ WG

will be split into the 2™ and 1% WGs and the content of light energy in these WGs
depends upon the phase factors 7, and 7, . In particular for 7, =7,, the light will be

completely shifted into the 1%* WG (switching case).

2.1.4 Case 4

In fine, we engineer the coupling coefficients in a manner that the coupling coefficients £,, (Z)

and k,, (z) coincide and precede £, (Z) . Such type of coupling sequences satisfy the following

asymptotic relations: §, (z = —oo) =0,9, (z = +oo) = %,g}ﬁl (z = —oo) =g, (z = +oo) = %

>i) If we introduce the initial amplitude as (1,0,0,0)", the final light amplitude will be
(, 0,—%@"’71 ,—%e"m )" It is clearly a power splitting case in which light in the 15

WG is equally transferred to the 3 and 4" WGs.
(ii) Elementary light amplitude (0,1,0,0)” leads the final amplitude

2
shared into the 2™ and 1%t WGs and the amount of light in these WGs is ruled by the

(1(e"'73 —ei”4),%(ei"3 +€"),0,0)". Obviously initial light in the 2™ WG will be
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phase factors 77,and 7, . In particular for 77, =17,, the light will be completely trapped
in the 24 WG (self-trapping case).
(iii)) When the initial amplitude is (0,0,1,0)", final light amplitude will be

s +e""‘) B —e’”4),—e'”2,—5e’”2)T which indicates that initial light in

1 1
25 )

the 3™ WG will be shifted into all the WGs with equal amount of light in the 3™ and
4" WGs (25% in each). Percentage of light shared by the 1%t and 2™ WGs figures on
the phase factors n,and n,. For n, =7,, 50% (0%) light will be trapped in the 1*
2 WG.

(iv)  Final light amplitude will be (L(e""s +e ),L(e""s —e™),

2\2 22

incorporate the initial light amplitude as (0,0,0,1)". Clearly elemental light in the 3™
WG will be split into all the WGs and the content of light in the 3 and 4" WGs be
equal (25% in each). Percentage of light shared by the 1t and 2™ WGs is governed by

1, 1, .
——e””,Ee”72 T if we

the phase factors 7, and 7,. Specifically for 7, =7,, the 50% (0%) light will be
trapped in the 1%t (2")WG.

3. Conclusion

To summarize, the propagation dynamics of a four-WG directional coupler configuration
similar to a tripod system in atomic scale is investigated in order to display the optical analogue
of coherent population transfer and trapping. Our approach may be treated as a general one in the
sense that we have used all the adiabatic states instead of only the dark states (STIRAP
technique) responsible for light transfer mechanism. Another important point to highlight is that
our system is potent to exhibit double dark resonance. Depending upon the arrangement of
various coupling coefficients and different conditions of initial light distribution, the coupler may
behave as power splitter, switch and self-trapper etc.
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Abstract: In this paper, we have intended to study the dynamics of the anisotropic
universe in modified gravity using the functional f(R,T) in the form f(R,T) =
AR+ AT. The cosmological models are constructed using the volumetric exponen-
tial expansion in Bianchi type VI, (BVIy) universe for three different values of
h =—1,0,1. The physical behaviors of the models are also studied.
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1. Introduction

Since the beginning, there has been many significant accomplishments in the
field of astrophysics and space science. Among all of them one of the most sub-
stantial achievement is Albert Einstein’s general theory of relativity. This theory
explains, warping of space-time as being the logic behind the observed gravita-
tional phenomena and gives a complete insight of gravity as a geometric property
of space-time. Thus relativity theory has crucial implications in present day astro-
physics. Contrary to all, Einstein’s general theory of relativity fails to explain the
accelerated expansion of the universe. This swift extension of the universe is indi-
cated by the recent cosmological data, which also determines that this accelerated
expansion of the universe is due to some energy matter with negative pressure.
Cosmologists have termed this energy matter as Dark Energy (DE) whose origin
is still a suspense. DE has posed an elementary objection to all the gravitational
theories. Introduction of ”The Cosmological Constant” by Einstein which gives
the energy density value of the vacuum space was a step towards explaining the
cosmic acceleration but it encountered frequent problems due to considerable dis-
parity between theory and observations [1]. Thus, in order to account for the
cosmic acceleration General Relativity can be altered in contrasting ways. One of
the ways which has gained enough praise is by modifying the underlying geome-
try. This is achieved by replacing the Einstein-Hilbert action through a random
function. f(R) gravity (function of Ricci scalar R), f(T) gravity(function of scalar
torsion T'), f(G) gravity (function of G) and f(R,T) gravity (combined function
of R and T are among the few functions which are used to modify the Einstein-
Hilbert action. It is considered that f(R) gravity is the most satisfactory function
to realize the cosmic acceleration.

Among the several theoretical models proposed in regard of the dark energy and
cosmic acceleration, a few are quintessence (Sahni and Starobinsky [2]; Padmanab-
han [3]), cosmological constant (Weinberg [4]; Peebles and Ratra [5]), tachyon field
(Padmanabhan [6]; Padmanabhan and choudhury [7]), quintom (Feng et al. [8];

1 E-mail: avinashbitsian@gmail.com
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Guo et al. [9]), Chaplygin gas (Kamenshchik et al. [10]; Bento et al. [11]), holo-
graphic models (Wang et al. [12]; Setare and Shafei [13], Setare [14]; Hu and
Ling [15]; Kim et al. [16]), phantom energy (Caldwell [17]; Nojiri and Odin-
tosov [18]), k-essence, f-essence etc. On the basis of verification of the above
theories, modified gravity has been successful in describing the late accelerated
expansion of the universe. Thus, modified gravity nowadays is a topic of great
interest. Out of all prospective variants of modified gravity, the f(R,T) gravity
theory proposed by Harko et al. [19] is one of the most fascinating theories. In this
theory they have generalized the basic f(R) theory by taking the gravitational
Lagrangian as a random function of Ricci scalar R and trace of the stress-energy
tensor T'.

Inspired by the above argument and investigations in modified theories of grav-
ity, in this paper, we offer to study a plane, static and symmetric space time in
f(R,T) gravity by considering various functions of f(R,T) as proposed in [19]
This paper has been organized as follows: In section 1, introductory discussion on
modified gravity was made. In section 2, the field equations of f(R,T) gravity in a
static, plane symmetric space time has been derived. Section 3 formulates the field
equations for a plane, static and symmetric space-time in f(R,T') gravity consider-
ing various cases of f(R,T)i.e. (i) f(R,T) = R+2f(T) (ii) f(R,T) = f1(R)+ f2(T)
(i) f(R,T) = f1(R)+ f2(R)f3(T) and giving the solutions for all the three cases.
In section 4 physical and geometrical parameters of the models are defined and
discussed along with their graphical plots. Finally conclusions are summarized in
the last Section 5.

2. f(R,T) Gravity Theory

In f(R,T) gravity, Hilbert-Einstien type variational principle yields the gravi-
tational field equations. The f(R,T) modified gravity action is given by

§= ﬁ/f(R,T)\/—_gd‘lm—i-/Lm\/—_gd%v )

where f(R,T) is an arbitrary function of Ricci scalar R, T being the trace of the
stress-energy tensor (T;;) of the matter and L., is the matter Lagrangian density.
The stress-energy tensor of matter is defined as

-2 6(/—gL
1y = 2 0/ =gkm), 2)
/_g 691_]
We assumed here that the dependence of matter Lagrangian is on the metric
tensor g;; rather than its derivatives.
The trace of the energy tensor of matter is given by
T = ¢"T;. (3)
So in this case the stress-energy tensor of matter is

OLm

Tij = giij — 2769“ .

(4)

Varying the action S of the gravitation field with respect to the metric tensor
components g*, the field equations of f(R,T) gravity are obtained as follows

F(R,T)Rig — 5 (R, T)gis + (9150 ~ ViV ) fn(R,T)

40



7

= 8IIT;; — fr(R,T)Ti; — fr(R, T)0;; (5)

where
af 62 L

91‘]' = —QTW + giij — 29 —agmagaﬁ .

(6)
Now here fr(R,T) = Bfg,#l, fr(R,T) = %, O = V'V; where V¢ is the

covariant derivative and T;; is the standard matter energy-momentum tensor.
Contraction of Eq. (5) yields

fr(R,T)R+30fr(R,T) — 2f(R,T) = 8T — fr(R,T)(T +6) (7)

where 0§ = 0:: . The above Eq. (7) gives a relation between the trace T' of energy-
momentum tensor and Ricci scalar R.

It can be seen that when f(R,T) = f(R), Eq. (5) yields the field equations of
f(R) gravity.

Now using Eq. (6), we get the variation of stress-energy. As there is no unique
definition of matter Lagrangian, the matter Lagrangian can be taken as Ly, = p.

Now using the Lagrangian Ly,, the stress-energy tensor of matter is given by

Ti; = (p + p)uiuj — pgijs (8)

where ui:(0,0,0,l) is the four velocity vector in the co-moving coordinate system
such that w’u; = 1 and uivjui =0, p and p are energy density and pressure of the
fluid respectively.

Then using Eq. (6), we obtain the variation of Stress-energy of perfect fluid as

eij = —2T7;j — Pgij- (9)

On the physical nature of the matter field,the field equations also depend
through the tensor 6;;.

Hence in the case of f(R,T) gravity depending on the nature of matter source.
We obtain several theoretical models for different matter contributions for f(R,T)
gravity. Harko et al (2011) gave three classes of model as

R+ 2/(T)
f(R,T) = f1(R) + f2(T) (10)
f1(R) + f2(R) f3(T).

In this paper we focus on all the three above mentioned cases. Firstly we focus
on the first case, i.e., f(R,T) = R+ 2f(T) where f(T) is an arbitrary function of
Stress-Energy tensor of matter. Now from Eq. (5) we get the field equations of
f(R,T) gravity as

1
Rij — 5Rgij = 8nTy5 — 2f(T)Tij — 2§ (T)0i5 + f(T)gij, (11)
where prime denotes differentiation with respect to the argument.

In perfect fluid the field equations become

1

Rg;; = 8nT;; — 2f' (T)Tij + [2pf'(T) + £(T)]gs;- (12)

Modifed gravity
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Then we focus on the second case, i.e., f(R,T) = f1(R)+ f2(T) where f1(R) is
an arbitrary function of Ricci Scalar and fo(7) is an arbitrary function of Stress-
Energy tensor of matter. For this case in perfect fluid the field equations develop
into

F(R)Rij — 5 1(R)gij = 87Tij + Fo(T)Tys + (D)o + 3 o(Dlgig. (13)

Finally we focus on the third case, i.e., f(R,T) = fi(R) + f2(R)f3(T) where
fi1(R) and f2(R) is an arbitrary functions of Ricci Scalar and f3(T') is an arbitrary
function of Stress-Energy tensor of matter. For this case in perfect fluid the field
equations develop into

UH(R) + 3(R) fs(D)Rs; — 3 1(R)gig

= 8Ty + Fa(R)FH(T)Tss + R(R)FH(D)p+ 4 fo(T)gis (14)
3. Field Equations and its solutions
We have considered a static, plane and symmetric space-time of the form
ds® = A%(dt* — da?) — B*(dy® + d2?), (15)

where A(t) and B(t) are the two anisotropic directions of the space and functions
of cosmic time only.
These functions are not equal due to radial asymmetry. The matter tensor can
be defined as
0;; = —2T;; — pgi; = (p, —p, —p, —p). (16)
Now the formulation of equations and their solution for each of the three cases
are shown.

8.1 Case I:
f(R,T) =R+ 2f(T). (17)

With specific function choice f(T") = AT, where ) is a constant, the field equa-
tions are obtained as

2B B? 2AB

w5t azpr ~ asp - BT (18)
B A2 i
m—ﬂ+ﬁ:(87r+3>\)p—)\p, (19)
B A A
W—F+F:(8W+3>\)p—)\p, (20)
24B = B?
ﬁ + W = —(87T + 3>\)p - )\p, (21)

where an overhead dot represents differentiation with respect to cosmic time ‘t’.
As Egs. (19) and (20) are same, therefore we have four unknowns namely A,
B, p, p and three equations. Without loss of generality we take

A=B™, (22)
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where ‘m’ is an arbitrary constant.
On solving the above Egs. (18) - (22) we get the solution as

A= (kit + ko)™?2, (23)

B = (k1t + k2)'/?, (24)

where k1 and k2 are arbitrary constants. p and p for this case are obtained as

L —(2m + 1)k:?
P=P= 8lan + 2 (kat + ;2)m+2' (25)
3.2 Case II:
f(R,T) = f1(R) + f2(T). (26)

With specific function choice f1(R) = AR and f2(T") = AT, where X is a con-
stant, the field equations are obtained as

25 B _r_gmirly, (30)

where an overhead dot represents differentiation with respect to cosmic time ‘t’.
As Egs. (28) and (29) are same, therefore we have four unknowns namely A,
B, p, p and three equations. Without loss of generality we take

A=DB", (31)

where ‘m’ is an arbitrary constant.
On solving the above Egs. (27) - (31) we get the solution as

A= (kit + ko)™?, (32)

B = (k1t + k2)'/?, (33)

where k1 and k2 are arbitrary constants. For this case p and p are obtained as

—\(2m + 1)k 2

P=P= 48 + N (kit + ka)mt2 (34)

3.3 Case III:
f(R,T) = f1(R) + f2(R) f3(T). (35)

Modifed gravity
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With specific function choice fi(R) = AR, f2(R) = AR and f3(T") = AT, where
A is a constant, the field equations are obtained as

2B B2  2AB 8p

A28 T A2B2 T ABB T A+ AZp—32%p’ (36)
B A? A 8mp
A28~ A% T A3 T N+ aZp—3a%p’ (37)
L
B A A _ 8mp (38)

A2B A% T A3 T A4 22p-—3A2%p’

PP .. <o -
% —%— ZEB]+(>\2p—)\—3)\2p)%+(6>\2p—2)\—2)\2p)i—g = 8mpA2,
(39)
where an overhead dot represents differentiation with respect to cosmic time ‘¢’.
As Egs. (37) and (38) are same, therefore we have four unknowns namely A,
B, p, p and three equations. Without loss of generality we take

(2A%p+22%p)]

A=B", (40)

where ‘m’ is an arbitrary constant.
On solving the above Egs. (36) - (40), we get the solution as

A = (kyt + ko)™, (41)

B = (k1t + k2)'/?, (42)

where k1 and ks are arbitrary constants. p and p for this case are obtained as

(mTz + 3+ %)/\Sy2 + (4mm + 2m) Ay

- , 43
p (16mm + 2m) A2y — (2m2 + 5 + 1)\4y2 — 642 (43)
81 — mAy
p=(—l "MV, 44
(m/\2y+*f1—y+87r)p (44
where
Kt
Y (45)

- (k1t + kg)m+2’
4. Physical and Geometrical Interpretations

In this section we define and study the physical and geometrical parameters of
our model. All the physical and geometrical parameters discussed below are same
for all the three cases. The volume scale factor ‘V’ and the average scale factor ‘R’
are obtained respectively as

V =+/(—g) = A’B® = (kat + ko)™, (46)

m+1

R=VY3= (kyit + ko)™ . (47)
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Fig. 2 R versus ¢ for (a) m =1, (b) m = 2 and (¢) m = 3 where k1 =2, ko = 1.

The model signifies that the spatial volume increases with increase in time and
points out the expanding nature of the space-time. The nature of volume scale
factor ‘V’ and the average scale factor ‘R’ can be inferred from Figs. 1 and 2
respectively for various values of constant ‘m’.

Analogous to this model the scalar expansion ‘0’ is given as

0=V = itk (48)
The Hubble parameter ‘H’ is given as
0 (m+1)k1

T3 3(kit + ko) (49)
which comes out to be a function of ‘¢’.

Measure of the cosmic accelerated expansion of the universe is defined by the
deceleration parameter ‘q’. Value of the deceleration parameter governs the nature
of the space-time. Positive value indicates decelerating model whereas negative
value indicates accelerating model. Now, we define the decelerating parameter ‘g’

as .
—RR
q= 2 (50)
For our model the value of ‘q’ is obtained as

). (51)

m—2

=1
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The deceleration parameter attains the following values depending on different
values of m

>0 0<m<?2
g=<¢{=0 m=2 (52)
<0 m>2.

06

Fig. 3 g vs m where 1 <=m <=10

Hence the model shows decelerating nature for 0 < m < 2, remains stagnant at
m = 2 and accelerating nature for m > 2. Behavior of the deceleration parameter
‘q’ with constant ‘m’ is shown in Fig. 3.

The Shear scalar ‘o’ is defined as follows

=iy (53)
2 * 3"
For our model it comes out to be

2 (2—m? — 8m)k?

7T 24kt + k2)? (54)
The Ricci scalar for all the models is found to be
R = (kit+ ko) ™% (55)

Ast -0,R— Ic2m3+1 and as t — oo , R — oo. Therefore, it can be seen that the
curvature of the space-time is increasing continuously with time and approaches
infinity at infinite time. The trace of the stress-energy tensor ‘T” for the three cases
are respectively as follows

4.1.1 Case I:

_ (2m + 1)k12
= 4(4m + ) (k1t + kg)m+2” (56)
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4.1.2 Case I1I:

A(2m + 1)k 2

T = 2 Br + N kit + ka)™¥2 (57)
4.1.8 Case I11I:
2,4 My
= dmA°y + )\;1 167 ). (58)
mA2y + 3% + 8w
where ,
(16rm + 2m) A2y — (2m2 + 3 + L)A4y2 — 6472
and )
_ k1
Y= leat + kg)mt2” (60)
Now, the function f(R,T) for all the three models are as follows
4.2.1 Case I:
B B mt1 (2m + 1)k12
4.2.2 Case II:
_ _ mt1 A2m + 1)k, ?
4.2.8 Case III:
mi1 AmA%y + X¥ — 167
F(R,T) = AR(L+T) = [(knt +k2) ™57 (1 4+ A(— 20— L= 2T)p)], (63)
mA2y + 5% 4+ 8x
where )
. (% + 2 + X% + (drm 4 2m))y (64)
(16mm + 2m)A2y — (2m2 + 3 + 1)\4y2 — 6472
and )
y a (65)

- (k1t + kg)m+2°

The geometrical nature of the model is described by the state finder diagnostic
pair {r, s} which are defined as

"= RES (66)
and 1
.
PR ek 2 (67)
3(a-3)

For all the three models discussed above the state finder diagnostic pair {r, s}
is found to be
- (m —2)(m —5)

(m+1)2 (68)

Modifed gravity
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Fig. 4 r vs s where 1 <=m <= 10

and
=2 (69)
(m+1)’
where m is an arbitrary constant. Fig. 4 depicts the plot of state finder diagnostic
pair r with s.

5. Conclusions

The cosmological models of the universe has been framed in an anisotropic
space-time with the three choices of f(R,T) gravity. The dynamical parameters
are derived with an assumption between the scale factors. The physical parameters
of the models are studied along-with the state finder pair. The models presented
here provide a systematic mathematical derivation and the graphical representa-
tion shows the physical viability of the model. We conclude that further physical
investigations can be performed to get more insight to its behavior.

Acknowledgement

The author is grateful to Prof. B. Mishra, Department of Mathematics, Birla In-
stitute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078,
India for his encouragement and constant supervision throughout the work.He
also thankfully acknowledges the cooperation that received from the authority of
Microsoft India.

References

1. E.J. Copeland et al., Int J. Mod. Phys. D15 (2006) 1753.

2. V. Sahnin and A. Starobincsky, Int. J. Mod. Phys. D 9 (2000) 373.
3. T. Padmanabhan, Gen. Rel. Grav. 40 (2008) 529.

4. S. Weinberg, Rev. Mod. Phys. 61 (1989) 1.

48



49

Modifed gravity

L et e el e el o e
CRXNOUAWNRO©0TD U

. P.J.E. Peebles and B. Ratra, Phys. Rev. D 75 (2003) 559.
. T. Padmanabhan, Phys. Rev. D 66 (2002) 021301.

T. Padmanabhan and T. Roy Choudhury, Phys. Rev. D 66 (2002) 081301.

. B. Feng, X.L. Wang and X.M. Zhang, Phys. Lett. B 607 (2005) 35.

Z.K. Guo, N. Ohta and Y.Z. Zhang, Phys Rev. D 72 (2005) 023504.
A.Y. Kamemschik, M. Moschella and V. Pasquire, Phys Lett. B 511 (2001) 265.

. M.C. Bento, O. Bertolami and A.A. Sen, Phys. Rev. D 66 (2002) 043507.

. B. Wang, Y. Gong and E. Abdalla, Phys. Lett. B 624 (2005) 141.

. M.R. Setare and S. Shafei, JCAP 0609 (2006) 11.

. M.R. Setare, JOAP 0701 (2007) 023.

. Bo Hu and Yi Ling, Phys. Rev. D 73 (2006) 123510.

. H. Kim, HW. Lee and Y.S. Myung, Phys. Lett. B 632 (2006) 605.

. R.R. Caldwell, Phys. Lett. B 545 (2002) 23.

. S. Nojiri and S.D. Odintsov, Phys. Rev. D 68 (2003) 123512.

. T. Harko, E.S.N. Lobo, S. Nojiri and S.D. Odintsov, Phys. Rev. D 84 (2011) 024024.



| SCIENTIFIC VOYAGE

Scientific Voyage |
Vol. 2, No. 1, L

Bobicat
Page 50-51 (2021) ISSN: 2395-5546 Janar

BOOK REVIEW

N. R. Sen: Life and Science

Rajinder Singh and Suprakash C. Roy

Shaker Verlag/Diren 2021

Utpal Mukhopadhyay'

Satyabharati Vidyapith, Nabapally, North 24 Parganas, Kolkata 700 126, West Bengal, India

Nikhil Ranjan Sen (NRS) is, to some extent, an unsung hero of modern Indian
mathematics. In spite of his pioneering work in various branches of Applied Mathematics and
pure physics, this person did not receive due recognition in his lifetime and has remained largely
obscured in common parlance. It is unfortunate that except publication of some articles on him,
none came forward to write an authentic biography of NRS covering his life and scientific
contributions. At last, the recently published book N. R. Sen: Life and Science by Dr. Rajinder
Singh of Oldenberg University, Germany and Suprakash C. Roy, Retired Professor as well as
Editor-in-Chief of Science and Culture, will fulfill that long felt need. Both Dr. Singh and Prof.
Roy are experienced researchers in History of Science and they have several publications, both
single and joint. In the book under review, they have unearthed a number of new information
about NRS using primary sources. Apart from Introduction, the book contains eight chapters and
an Appendix. Of these, six chapters are devoted to discussion of scientific contributions of NRS
and his associates.

In Chapter 1, family background of NRS, his academic life and connections with
various institutions and learned societies like Calcutta Mathematical Society, Indian Statistical
Institute, National Institute of Sciences (presently INSA), Indian Science Congress Association
etc. have been discussed. The legacy of mathematics culture inherited by NRS and his close
relatives has been also demonstrated. It is interesting to note that NRS was a staunch supporter of
the opinion that vernacular should be the medium of instruction up to graduate level. Chapter 2
deals with early research career and attainment of D.Sc. degree of NRS. The title and examiners
of his thesis and usual application seeking permission for submission of the same etc. have been

YEmail: utpalsbv@gmail.com
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discussed in detail. In Chapter 3, background of NRS’s interest in relativity and his research in
Germany under the supervision of two towering figures of physics have been discussed.
Doctorate degree conferred on NRS in Germany, the title of his thesis and names of its
examiners have also been presented in detail. Research of NRS in relativity after returning to
India is also discussed. Cosmological work of NRS, viz. work on de Sitter’s universe, Friedmann
model, Milne’s cosmological view, expansion of nebula etc. are the topics covered in Chapter 4.

In Chapter 5, investigations done by NRS and his associates on mass, density, radius,
temperature, pressure, composition, stability etc. of stars on the basis of Bethe’s law of energy
generation and Cowling model are presented including work on red giant stars. Study of
turbulence and research in fluid dynamics are the major subject matters of Chapter 6. In this
connection, a summary of the book The Modern Theory of Turbulence, written by NRS has been
discussed also. In Chapter 7, work of NRS and his associates in defence research, viz. work on
ballistics including the history of inclusion of the study of ballistics in M. Sc. course and
supervision of work on ballistics by NRS are discussed. Works of NRS in wave mechanics,
quantum mechanics, glowing metals etc. are also included in this chapter. Some of the
posthumous recognitions bestowed on Prof. N. R. Sen and his scientific contributions mentioned
by some recent authors have been narrated in Chapter 8. In the Appendix, an improved list of
papers and books written by NRS has been provided.

A salient feature of the book is that before discussing the contributions of NRS, basic
ideas and historical background of the field in which NRS worked have been very lucidly
explained along with previous works done in that line of research. This will help the readers to
grasp the essence and importance of NRS’s work in that particular area. The book contains a
number of rare and historical photographs which have enhanced its importance. Moreover, as
mentioned by the authors, there still remain some unanswered questions about NRS. So, this
book may trigger further research on The Father of Applied Mathematics in India. Finally, it
should be mentioned that this book is a must read for the researchers in History of Science as
well as common readers interested about the development of mathematics in modern India.



